Misc upgrades including mips3 float mode support, skip overwriting existing files if they're identical to the current recompiled output

This commit is contained in:
Mr-Wiseguy 2023-10-29 20:53:17 -04:00
parent 9321a60f28
commit d249363fe5
6 changed files with 701 additions and 505 deletions

View file

@ -4,6 +4,7 @@
#include <unordered_set> #include <unordered_set>
#include <unordered_map> #include <unordered_map>
#include <cassert> #include <cassert>
#include <filesystem>
#include "rabbitizer.hpp" #include "rabbitizer.hpp"
#include "fmt/format.h" #include "fmt/format.h"
#include "fmt/ostream.h" #include "fmt/ostream.h"
@ -187,7 +188,7 @@ BranchTargets get_branch_targets(const std::vector<rabbitizer::InstructionRsp>&
return ret; return ret;
} }
bool process_instruction(size_t instr_index, const std::vector<rabbitizer::InstructionRsp>& instructions, std::ofstream& output_file, const BranchTargets& branch_targets, bool indent, bool in_delay_slot) { bool process_instruction(size_t instr_index, const std::vector<rabbitizer::InstructionRsp>& instructions, std::ofstream& output_file, const BranchTargets& branch_targets, const std::unordered_set<uint32_t>& unsupported_instructions, bool indent, bool in_delay_slot) {
const auto& instr = instructions[instr_index]; const auto& instr = instructions[instr_index];
uint32_t instr_vram = instr.getVram(); uint32_t instr_vram = instr.getVram();
@ -230,7 +231,7 @@ bool process_instruction(size_t instr_index, const std::vector<rabbitizer::Instr
auto print_unconditional_branch = [&]<typename... Ts>(fmt::format_string<Ts...> fmt_str, Ts ...args) { auto print_unconditional_branch = [&]<typename... Ts>(fmt::format_string<Ts...> fmt_str, Ts ...args) {
if (instr_index < instructions.size() - 1) { if (instr_index < instructions.size() - 1) {
uint32_t next_vram = instr_vram + 4; uint32_t next_vram = instr_vram + 4;
process_instruction(instr_index + 1, instructions, output_file, branch_targets, false, true); process_instruction(instr_index + 1, instructions, output_file, branch_targets, unsupported_instructions, false, true);
} }
print_indent(); print_indent();
fmt::print(output_file, fmt_str, args...); fmt::print(output_file, fmt_str, args...);
@ -241,7 +242,7 @@ bool process_instruction(size_t instr_index, const std::vector<rabbitizer::Instr
fmt::print(output_file, "{{\n "); fmt::print(output_file, "{{\n ");
if (instr_index < instructions.size() - 1) { if (instr_index < instructions.size() - 1) {
uint32_t next_vram = instr_vram + 4; uint32_t next_vram = instr_vram + 4;
process_instruction(instr_index + 1, instructions, output_file, branch_targets, true, true); process_instruction(instr_index + 1, instructions, output_file, branch_targets, unsupported_instructions, true, true);
} }
fmt::print(output_file, " "); fmt::print(output_file, " ");
fmt::print(output_file, fmt_str, args...); fmt::print(output_file, fmt_str, args...);
@ -252,6 +253,14 @@ bool process_instruction(size_t instr_index, const std::vector<rabbitizer::Instr
print_indent(); print_indent();
} }
// Replace unsupported instructions with early returns
if (unsupported_instructions.contains(instr_vram)) {
print_line("return RspExitReason::Unsupported", instr_vram);
if (indent) {
print_indent();
}
}
int rd = (int)instr.GetO32_rd(); int rd = (int)instr.GetO32_rd();
int rs = (int)instr.GetO32_rs(); int rs = (int)instr.GetO32_rs();
int base = rs; int base = rs;
@ -337,6 +346,10 @@ bool process_instruction(size_t instr_index, const std::vector<rabbitizer::Instr
break; break;
case InstrId::rsp_add: case InstrId::rsp_add:
case InstrId::rsp_addu: case InstrId::rsp_addu:
if (rd == 0) {
fmt::print(output_file, "\n");
break;
}
print_line("{}{} = RSP_ADD32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt); print_line("{}{} = RSP_ADD32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break; break;
case InstrId::rsp_negu: // pseudo instruction for subu x, 0, y case InstrId::rsp_negu: // pseudo instruction for subu x, 0, y
@ -349,6 +362,10 @@ bool process_instruction(size_t instr_index, const std::vector<rabbitizer::Instr
print_line("{}{} = RSP_ADD32({}{}, {})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, signed_imm_string); print_line("{}{} = RSP_ADD32({}{}, {})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, signed_imm_string);
break; break;
case InstrId::rsp_and: case InstrId::rsp_and:
if (rd == 0) {
fmt::print(output_file, "\n");
break;
}
print_line("{}{} = {}{} & {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt); print_line("{}{} = {}{} & {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break; break;
case InstrId::rsp_andi: case InstrId::rsp_andi:
@ -518,6 +535,7 @@ void write_indirect_jumps(std::ofstream& output_file, const BranchTargets& branc
//std::string output_file_path = "../test/rsp/njpgdspMain.cpp"; //std::string output_file_path = "../test/rsp/njpgdspMain.cpp";
//std::string output_function_name = "njpgdspMain"; //std::string output_function_name = "njpgdspMain";
//const std::vector<uint32_t> extra_indirect_branch_targets{}; //const std::vector<uint32_t> extra_indirect_branch_targets{};
//const std::unordered_set<uint32_t> unsupported_instructions{};
// OoT aspMain // OoT aspMain
//constexpr size_t rsp_text_offset = 0xB89260; //constexpr size_t rsp_text_offset = 0xB89260;
@ -527,17 +545,35 @@ void write_indirect_jumps(std::ofstream& output_file, const BranchTargets& branc
//std::string output_file_path = "../test/rsp/aspMain.cpp"; //std::string output_file_path = "../test/rsp/aspMain.cpp";
//std::string output_function_name = "aspMain"; //std::string output_function_name = "aspMain";
//const std::vector<uint32_t> extra_indirect_branch_targets{ 0x1F68, 0x1230, 0x114C, 0x1F18, 0x1E2C, 0x14F4, 0x1E9C, 0x1CB0, 0x117C, 0x17CC, 0x11E8, 0x1AA4, 0x1B34, 0x1190, 0x1C5C, 0x1220, 0x1784, 0x1830, 0x1A20, 0x1884, 0x1A84, 0x1A94, 0x1A48, 0x1BA0 }; //const std::vector<uint32_t> extra_indirect_branch_targets{ 0x1F68, 0x1230, 0x114C, 0x1F18, 0x1E2C, 0x14F4, 0x1E9C, 0x1CB0, 0x117C, 0x17CC, 0x11E8, 0x1AA4, 0x1B34, 0x1190, 0x1C5C, 0x1220, 0x1784, 0x1830, 0x1A20, 0x1884, 0x1A84, 0x1A94, 0x1A48, 0x1BA0 };
//const std::unordered_set<uint32_t> unsupported_instructions{};
// MM's njpgdspMain is identical to OoT's // MM's njpgdspMain is identical to OoT's
// MM aspMain //// MM aspMain
constexpr size_t rsp_text_offset = 0xC40FF0; //constexpr size_t rsp_text_offset = 0xC40FF0;
constexpr size_t rsp_text_size = 0x1000; //constexpr size_t rsp_text_size = 0x1000;
constexpr size_t rsp_text_address = 0x04001000; //constexpr size_t rsp_text_address = 0x04001000;
std::string rom_file_path = "../../MMRecomp/mm.us.rev1.z64"; // uncompressed rom! //std::string rom_file_path = "../../MMRecomp/mm.us.rev1.z64"; // uncompressed rom!
std::string output_file_path = "../../MMRecomp/rsp/aspMain.cpp"; //std::string output_file_path = "../../MMRecomp/rsp/aspMain.cpp";
std::string output_function_name = "aspMain"; //std::string output_function_name = "aspMain";
const std::vector<uint32_t> extra_indirect_branch_targets{ 0x1F80, 0x1250, 0x1154, 0x1094, 0x1E0C, 0x1514, 0x1E7C, 0x1C90, 0x1180, 0x1808, 0x11E8, 0x1ADC, 0x1B6C, 0x1194, 0x1EF8, 0x1240, 0x17C0, 0x186C, 0x1A58, 0x18BC, 0x1ABC, 0x1ACC, 0x1A80, 0x1BD4 }; //const std::vector<uint32_t> extra_indirect_branch_targets{ 0x1F80, 0x1250, 0x1154, 0x1094, 0x1E0C, 0x1514, 0x1E7C, 0x1C90, 0x1180, 0x1808, 0x11E8, 0x1ADC, 0x1B6C, 0x1194, 0x1EF8, 0x1240, 0x17C0, 0x186C, 0x1A58, 0x18BC, 0x1ABC, 0x1ACC, 0x1A80, 0x1BD4 };
//const std::unordered_set<uint32_t> unsupported_instructions{};
// BT n_aspMain
constexpr size_t rsp_text_offset = 0x1E4F3B0;
constexpr size_t rsp_text_size = 0xF80;
constexpr size_t rsp_text_address = 0x04001080;
std::string rom_file_path = "../../BTRecomp/banjotooie.decompressed.us.z64"; // uncompressed rom!
std::string output_file_path = "../../BTRecomp/rsp/n_aspMain.cpp";
std::string output_function_name = "n_aspMain";
const std::vector<uint32_t> extra_indirect_branch_targets{
// dispatch table
0x1AE8, 0x143C, 0x1240, 0x1D84, 0x126C, 0x1B20, 0x12A8, 0x1214, 0x141C, 0x1310, 0x13CC, 0x12E4, 0x1FB0, 0x1358, 0x16EC, 0x1408
};
const std::unordered_set<uint32_t> unsupported_instructions{
// cmd_MP3
0x00001214
};
#ifdef _MSC_VER #ifdef _MSC_VER
inline uint32_t byteswap(uint32_t val) { inline uint32_t byteswap(uint32_t val) {
@ -589,6 +625,7 @@ int main() {
} }
// Open output file and write beginning // Open output file and write beginning
std::filesystem::create_directories(std::filesystem::path{ output_file_path }.parent_path());
std::ofstream output_file(output_file_path); std::ofstream output_file(output_file_path);
fmt::print(output_file, fmt::print(output_file,
"#include \"rsp.h\"\n" "#include \"rsp.h\"\n"
@ -603,7 +640,7 @@ int main() {
" r1 = 0xFC0;\n", output_function_name); " r1 = 0xFC0;\n", output_function_name);
// Write each instruction // Write each instruction
for (size_t instr_index = 0; instr_index < instrs.size(); instr_index++) { for (size_t instr_index = 0; instr_index < instrs.size(); instr_index++) {
process_instruction(instr_index, instrs, output_file, branch_targets, false, false); process_instruction(instr_index, instrs, output_file, branch_targets, unsupported_instructions, false, false);
} }
// Terminate instruction code with a return to indicate that the microcode has run past its end // Terminate instruction code with a return to indicate that the microcode has run past its end

View file

@ -39,14 +39,23 @@ namespace RecompPort {
uint32_t value; uint32_t value;
}; };
struct FunctionSize {
std::string func_name;
uint32_t size_bytes;
};
struct Config { struct Config {
int32_t entrypoint; int32_t entrypoint;
bool uses_mips3_float_mode;
std::filesystem::path elf_path; std::filesystem::path elf_path;
std::filesystem::path output_func_path; std::filesystem::path output_func_path;
std::filesystem::path relocatable_sections_path; std::filesystem::path relocatable_sections_path;
std::vector<std::string> stubbed_funcs; std::vector<std::string> stubbed_funcs;
std::vector<std::string> ignored_funcs;
DeclaredFunctionMap declared_funcs; DeclaredFunctionMap declared_funcs;
std::vector<InstructionPatch> instruction_patches; std::vector<InstructionPatch> instruction_patches;
std::vector<FunctionSize> manual_func_sizes;
std::string bss_section_suffix;
Config(const char* path); Config(const char* path);
bool good() { return !bad; } bool good() { return !bad; }
@ -107,6 +116,7 @@ namespace RecompPort {
std::vector<uint32_t> function_addrs; std::vector<uint32_t> function_addrs;
std::vector<Reloc> relocs; std::vector<Reloc> relocs;
std::string name; std::string name;
ELFIO::Elf_Half bss_section_index = (ELFIO::Elf_Half)-1;
bool executable = false; bool executable = false;
bool relocatable = false; bool relocatable = false;
}; };
@ -128,6 +138,8 @@ namespace RecompPort {
std::vector<std::vector<size_t>> section_functions; std::vector<std::vector<size_t>> section_functions;
// The section names that were specified as relocatable // The section names that were specified as relocatable
std::unordered_set<std::string> relocatable_sections; std::unordered_set<std::string> relocatable_sections;
// Functions with manual size overrides
std::unordered_map<std::string, size_t> manually_sized_funcs;
int executable_section_count; int executable_section_count;
Context(const ELFIO::elfio& elf_file) { Context(const ELFIO::elfio& elf_file) {
@ -142,7 +154,7 @@ namespace RecompPort {
}; };
bool analyze_function(const Context& context, const Function& function, const std::vector<rabbitizer::InstructionCpu>& instructions, FunctionStats& stats); bool analyze_function(const Context& context, const Function& function, const std::vector<rabbitizer::InstructionCpu>& instructions, FunctionStats& stats);
bool recompile_function(const Context& context, const Function& func, const std::filesystem::path& output_path, std::span<std::vector<uint32_t>> static_funcs); bool recompile_function(const Context& context, const Config& config, const Function& func, const std::filesystem::path& output_path, std::span<std::vector<uint32_t>> static_funcs);
} }
#endif #endif

View file

@ -199,7 +199,9 @@ bool analyze_instruction(const rabbitizer::InstructionCpu& instr, const RecompPo
address, address,
instr.getVram() instr.getVram()
); );
} else { }
// Allow tail calls (TODO account for trailing nops due to bad function splits)
else if (instr.getVram() != func.vram + (func.words.size() - 2) * sizeof(func.words[0])) {
// Inconclusive analysis // Inconclusive analysis
fmt::print(stderr, "Failed to to find jump table for `jr {}` at 0x{:08X} in {}\n", RabbitizerRegister_getNameGpr(rs), instr.getVram(), func.name); fmt::print(stderr, "Failed to to find jump table for `jr {}` at 0x{:08X} in {}\n", RabbitizerRegister_getNameGpr(rs), instr.getVram(), func.name);
return false; return false;

View file

@ -43,6 +43,32 @@ std::vector<std::string> get_stubbed_funcs(const toml::value& patches_data) {
return stubbed_funcs; return stubbed_funcs;
} }
std::vector<std::string> get_ignored_funcs(const toml::value& patches_data) {
std::vector<std::string> ignored_funcs{};
// Check if the ignored funcs array exists.
const auto& ignored_funcs_data = toml::find_or<toml::value>(patches_data, "ignored", toml::value{});
if (ignored_funcs_data.type() == toml::value_t::empty) {
// No stubs, nothing to do here.
return ignored_funcs;
}
// Get the ignored funcs array as an array type.
const toml::array& ignored_funcs_array = ignored_funcs_data.as_array();
// Make room for all the ignored funcs in the array.
ignored_funcs.resize(ignored_funcs_array.size());
// Gather the stubs and place them into the array.
for (size_t stub_idx = 0; stub_idx < ignored_funcs_array.size(); stub_idx++) {
// Copy the entry into the ignored function list.
ignored_funcs[stub_idx] = ignored_funcs_array[stub_idx].as_string();
}
return ignored_funcs;
}
std::unordered_map<std::string, RecompPort::FunctionArgType> arg_type_map{ std::unordered_map<std::string, RecompPort::FunctionArgType> arg_type_map{
{"u32", RecompPort::FunctionArgType::u32}, {"u32", RecompPort::FunctionArgType::u32},
{"s32", RecompPort::FunctionArgType::s32}, {"s32", RecompPort::FunctionArgType::s32},
@ -84,7 +110,7 @@ RecompPort::DeclaredFunctionMap get_declared_funcs(const toml::value& patches_da
const toml::array& funcs_array = funcs_data.as_array(); const toml::array& funcs_array = funcs_data.as_array();
// Reserve room for all the funcs in the map. // Reserve room for all the funcs in the map.
declared_funcs.reserve(funcs_data.size()); declared_funcs.reserve(funcs_array.size());
for (const toml::value& cur_func_val : funcs_array) { for (const toml::value& cur_func_val : funcs_array) {
const std::string& func_name = toml::find<std::string>(cur_func_val, "name"); const std::string& func_name = toml::find<std::string>(cur_func_val, "name");
const toml::array& args_in = toml::find<toml::array>(cur_func_val, "args"); const toml::array& args_in = toml::find<toml::array>(cur_func_val, "args");
@ -95,6 +121,40 @@ RecompPort::DeclaredFunctionMap get_declared_funcs(const toml::value& patches_da
return declared_funcs; return declared_funcs;
} }
std::vector<RecompPort::FunctionSize> get_func_sizes(const toml::value& patches_data) {
std::vector<RecompPort::FunctionSize> func_sizes{};
// Check if the func size array exists.
const toml::value& sizes_data = toml::find_or<toml::value>(patches_data, "function_sizes", toml::value{});
if (sizes_data.type() == toml::value_t::empty) {
// No func size array, nothing to do here
return func_sizes;
}
// Get the funcs array as an array type.
const toml::array& sizes_array = sizes_data.as_array();
// Reserve room for all the funcs in the map.
func_sizes.reserve(sizes_array.size());
for (const toml::value& cur_func_size : sizes_array) {
const std::string& func_name = toml::find<std::string>(cur_func_size, "name");
uint32_t func_size = toml::find<uint32_t>(cur_func_size, "size");
// Make sure the size is divisible by 4
if (func_size & (4 - 1)) {
// It's not, so throw an error (and make it look like a normal toml one).
throw toml::type_error(toml::detail::format_underline(
std::string{ std::source_location::current().function_name() } + ": function size not divisible by 4", {
{cur_func_size.location(), ""}
}), cur_func_size.location());
}
func_sizes.emplace_back(func_name, func_size);
}
return func_sizes;
}
std::vector<RecompPort::InstructionPatch> get_instruction_patches(const toml::value& patches_data) { std::vector<RecompPort::InstructionPatch> get_instruction_patches(const toml::value& patches_data) {
std::vector<RecompPort::InstructionPatch> ret; std::vector<RecompPort::InstructionPatch> ret;
@ -155,6 +215,8 @@ RecompPort::Config::Config(const char* path) {
elf_path = concat_if_not_empty(basedir, toml::find<std::string>(input_data, "elf_path")); elf_path = concat_if_not_empty(basedir, toml::find<std::string>(input_data, "elf_path"));
output_func_path = concat_if_not_empty(basedir, toml::find<std::string>(input_data, "output_func_path")); output_func_path = concat_if_not_empty(basedir, toml::find<std::string>(input_data, "output_func_path"));
relocatable_sections_path = concat_if_not_empty(basedir, toml::find_or<std::string>(input_data, "relocatable_sections_path", "")); relocatable_sections_path = concat_if_not_empty(basedir, toml::find_or<std::string>(input_data, "relocatable_sections_path", ""));
uses_mips3_float_mode = toml::find_or<bool>(input_data, "uses_mips3_float_mode", false);
bss_section_suffix = toml::find_or<std::string>(input_data, "bss_section_suffix", ".bss");
// Patches section (optional) // Patches section (optional)
const toml::value& patches_data = toml::find_or<toml::value>(config_data, "patches", toml::value{}); const toml::value& patches_data = toml::find_or<toml::value>(config_data, "patches", toml::value{});
@ -162,11 +224,17 @@ RecompPort::Config::Config(const char* path) {
// Stubs array (optional) // Stubs array (optional)
stubbed_funcs = get_stubbed_funcs(patches_data); stubbed_funcs = get_stubbed_funcs(patches_data);
// Ignored funcs array (optional)
ignored_funcs = get_ignored_funcs(patches_data);
// Functions (optional) // Functions (optional)
declared_funcs = get_declared_funcs(patches_data); declared_funcs = get_declared_funcs(patches_data);
// Single-instruction patches (optional) // Single-instruction patches (optional)
instruction_patches = get_instruction_patches(patches_data); instruction_patches = get_instruction_patches(patches_data);
// Manual function sizes (optional)
manual_func_sizes = get_func_sizes(patches_data);
} }
} }
catch (const toml::syntax_error& err) { catch (const toml::syntax_error& err) {

View file

@ -540,6 +540,8 @@ std::unordered_set<std::string> renamed_funcs{
"sincosf", "sincosf",
"sinf", "sinf",
"cosf", "cosf",
"__sinf",
"__cosf",
"sqrt", "sqrt",
"sqrtf", "sqrtf",
"memcpy", "memcpy",
@ -567,17 +569,8 @@ std::unordered_set<std::string> renamed_funcs{
"roundf", "roundf",
"trunc", "trunc",
"truncf", "truncf",
"vsprintf" "vsprintf",
}; "__assert",
// Functions that weren't declared properly and thus have no size in the elf
std::unordered_map<std::string, size_t> unsized_funcs{
{ "guMtxF2L", 0x64 },
{ "guScaleF", 0x48 },
{ "guTranslateF", 0x48 },
{ "guMtxIdentF", 0x48 },
{ "sqrtf", 0x8 },
{ "guMtxIdent", 0x4C },
}; };
bool read_symbols(RecompPort::Context& context, const ELFIO::elfio& elf_file, ELFIO::section* symtab_section, uint32_t entrypoint) { bool read_symbols(RecompPort::Context& context, const ELFIO::elfio& elf_file, ELFIO::section* symtab_section, uint32_t entrypoint) {
@ -605,24 +598,23 @@ bool read_symbols(RecompPort::Context& context, const ELFIO::elfio& elf_file, EL
} }
// Check if this symbol is the entrypoint // Check if this symbol is the entrypoint
if (value == entrypoint /*&& type == ELFIO::STT_FUNC*/) { if (value == entrypoint && type == ELFIO::STT_FUNC) {
if (found_entrypoint_func) { if (found_entrypoint_func) {
fmt::print(stderr, "Ambiguous entrypoint\n"); fmt::print(stderr, "Ambiguous entrypoint: {}\n", name);
return false; return false;
} }
found_entrypoint_func = true; found_entrypoint_func = true;
fmt::print("Found entrypoint, original name: {}\n", name);
size = 0x50; // dummy size for entrypoints, should cover them all size = 0x50; // dummy size for entrypoints, should cover them all
name = "recomp_entrypoint"; name = "recomp_entrypoint";
} }
// Check if this symbol is unsized and if so populate its size from the unsized_funcs map // Check if this symbol has a size override
if (size == 0) { auto size_find = context.manually_sized_funcs.find(name);
auto size_find = unsized_funcs.find(name); if (size_find != context.manually_sized_funcs.end()) {
if (size_find != unsized_funcs.end()) {
size = size_find->second; size = size_find->second;
type = ELFIO::STT_FUNC; type = ELFIO::STT_FUNC;
} }
}
if (reimplemented_funcs.contains(name)) { if (reimplemented_funcs.contains(name)) {
reimplemented = true; reimplemented = true;
@ -653,7 +645,7 @@ bool read_symbols(RecompPort::Context& context, const ELFIO::elfio& elf_file, EL
context.functions_by_vram[vram].push_back(context.functions.size()); context.functions_by_vram[vram].push_back(context.functions.size());
// Find the entrypoint by rom address in case it doesn't have vram as its value // Find the entrypoint by rom address in case it doesn't have vram as its value
if (rom_address == 0x1000) { if (rom_address == 0x1000 && type == ELFIO::STT_FUNC) {
vram = entrypoint; vram = entrypoint;
found_entrypoint_func = true; found_entrypoint_func = true;
name = "recomp_entrypoint"; name = "recomp_entrypoint";
@ -719,7 +711,7 @@ std::optional<size_t> get_segment(const std::vector<SegmentEntry>& segments, ELF
return std::nullopt; return std::nullopt;
} }
ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio& elf_file) { ELFIO::section* read_sections(RecompPort::Context& context, const RecompPort::Config& config, const ELFIO::elfio& elf_file) {
ELFIO::section* symtab_section = nullptr; ELFIO::section* symtab_section = nullptr;
std::vector<SegmentEntry> segments{}; std::vector<SegmentEntry> segments{};
segments.resize(elf_file.segments.size()); segments.resize(elf_file.segments.size());
@ -740,6 +732,7 @@ ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio&
//); //);
std::unordered_map<std::string, ELFIO::section*> reloc_sections_by_name; std::unordered_map<std::string, ELFIO::section*> reloc_sections_by_name;
std::unordered_map<std::string, ELFIO::section*> bss_sections_by_name;
// Iterate over every section to record rom addresses and find the symbol table // Iterate over every section to record rom addresses and find the symbol table
fmt::print("Sections\n"); fmt::print("Sections\n");
@ -757,6 +750,10 @@ ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio&
symtab_section = section.get(); symtab_section = section.get();
} }
if (context.relocatable_sections.contains(section_name)) {
section_out.relocatable = true;
}
// Check if this section is a reloc section // Check if this section is a reloc section
if (type == ELFIO::SHT_REL) { if (type == ELFIO::SHT_REL) {
// If it is, determine the name of the section it relocates // If it is, determine the name of the section it relocates
@ -773,6 +770,16 @@ ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio&
} }
} }
// If the section is bss (SHT_NOBITS) and ends with the bss suffix, add it to the bss section map
if (type == ELFIO::SHT_NOBITS && section_name.ends_with(config.bss_section_suffix)) {
std::string bss_target_section = section_name.substr(0, section_name.size() - config.bss_section_suffix.size());
// If this bss section is for a section that has been marked as relocatable, record it in the reloc section lookup
if (context.relocatable_sections.contains(bss_target_section)) {
bss_sections_by_name[bss_target_section] = section.get();
}
}
// If this section isn't bss (SHT_NOBITS) and ends up in the rom (SHF_ALLOC), // If this section isn't bss (SHT_NOBITS) and ends up in the rom (SHF_ALLOC),
// find this section's rom address and copy it into the rom // find this section's rom address and copy it into the rom
if (type != ELFIO::SHT_NOBITS && section->get_flags() & ELFIO::SHF_ALLOC && section->get_size() != 0) { if (type != ELFIO::SHT_NOBITS && section->get_flags() & ELFIO::SHF_ALLOC && section->get_size() != 0) {
@ -831,13 +838,18 @@ ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio&
// TODO make sure that a reloc section was found for every section marked as relocatable // TODO make sure that a reloc section was found for every section marked as relocatable
// Process reloc sections // Process bss and reloc sections
for (RecompPort::Section &section_out : context.sections) { for (RecompPort::Section &section_out : context.sections) {
// Check if a bss section was found that corresponds with this section
auto bss_find = bss_sections_by_name.find(section_out.name);
if (bss_find != bss_sections_by_name.end()) {
section_out.bss_section_index = bss_find->second->get_index();
}
if (section_out.relocatable) {
// Check if a reloc section was found that corresponds with this section // Check if a reloc section was found that corresponds with this section
auto reloc_find = reloc_sections_by_name.find(section_out.name); auto reloc_find = reloc_sections_by_name.find(section_out.name);
if (reloc_find != reloc_sections_by_name.end()) { if (reloc_find != reloc_sections_by_name.end()) {
// Mark the section as relocatable
section_out.relocatable = true;
// Create an accessor for the reloc section // Create an accessor for the reloc section
ELFIO::relocation_section_accessor rel_accessor{ elf_file, reloc_find->second }; ELFIO::relocation_section_accessor rel_accessor{ elf_file, reloc_find->second };
// Allocate space for the relocs in this section // Allocate space for the relocs in this section
@ -923,6 +935,7 @@ ELFIO::section* read_sections(RecompPort::Context& context, const ELFIO::elfio&
// Nothing to do here // Nothing to do here
} }
} }
}
// Sort this section's relocs by address, which allows for binary searching and more efficient iteration during recompilation. // Sort this section's relocs by address, which allows for binary searching and more efficient iteration during recompilation.
// This is safe to do as the entire full_immediate in present in relocs due to the pairing that was done earlier, so the HI16 does not // This is safe to do as the entire full_immediate in present in relocs due to the pairing that was done earlier, so the HI16 does not
@ -968,7 +981,7 @@ void analyze_sections(RecompPort::Context& context, const ELFIO::elfio& elf_file
); );
} }
bool read_list_file(const std::filesystem::path& filename, std::unordered_set<std::string>& entries_out) { bool read_list_file(const std::filesystem::path& filename, std::vector<std::string>& entries_out) {
std::ifstream input_file{ filename }; std::ifstream input_file{ filename };
if (!input_file.good()) { if (!input_file.good()) {
return false; return false;
@ -977,7 +990,7 @@ bool read_list_file(const std::filesystem::path& filename, std::unordered_set<st
std::string entry; std::string entry;
while (input_file >> entry) { while (input_file >> entry) {
entries_out.emplace(std::move(entry)); entries_out.emplace_back(std::move(entry));
} }
return true; return true;
@ -1007,14 +1020,17 @@ int main(int argc, char** argv) {
RabbitizerConfig_Cfg.pseudos.pseudoBnez = false; RabbitizerConfig_Cfg.pseudos.pseudoBnez = false;
RabbitizerConfig_Cfg.pseudos.pseudoNot = false; RabbitizerConfig_Cfg.pseudos.pseudoNot = false;
std::unordered_set<std::string> relocatable_sections{}; std::vector<std::string> relocatable_sections_ordered{};
if (!config.relocatable_sections_path.empty()) { if (!config.relocatable_sections_path.empty()) {
if (!read_list_file(config.relocatable_sections_path, relocatable_sections)) { if (!read_list_file(config.relocatable_sections_path, relocatable_sections_ordered)) {
exit_failure("Failed to load the relocatable section list file: " + std::string(argv[4]) + "\n"); exit_failure("Failed to load the relocatable section list file: " + std::string(argv[4]) + "\n");
} }
} }
std::unordered_set<std::string> relocatable_sections{};
relocatable_sections.insert(relocatable_sections_ordered.begin(), relocatable_sections_ordered.end());
if (!elf_file.load(config.elf_path.string())) { if (!elf_file.load(config.elf_path.string())) {
exit_failure("Failed to load provided elf file\n"); exit_failure("Failed to load provided elf file\n");
} }
@ -1031,7 +1047,7 @@ int main(int argc, char** argv) {
context.relocatable_sections = std::move(relocatable_sections); context.relocatable_sections = std::move(relocatable_sections);
// Read all of the sections in the elf and look for the symbol table section // Read all of the sections in the elf and look for the symbol table section
ELFIO::section* symtab_section = read_sections(context, elf_file); ELFIO::section* symtab_section = read_sections(context, config, elf_file);
// Search the sections to see if any are overlays or TLB-mapped // Search the sections to see if any are overlays or TLB-mapped
analyze_sections(context, elf_file); analyze_sections(context, elf_file);
@ -1041,6 +1057,17 @@ int main(int argc, char** argv) {
exit_failure("No symbol table section found\n"); exit_failure("No symbol table section found\n");
} }
// Functions that weren't declared properly and thus have no size in the elf
//context.manually_sized_funcs.emplace("guMtxF2L", 0x64);
//context.manually_sized_funcs.emplace("guScaleF", 0x48);
//context.manually_sized_funcs.emplace("guTranslateF", 0x48);
//context.manually_sized_funcs.emplace("guMtxIdentF", 0x48);
//context.manually_sized_funcs.emplace("sqrtf", 0x8);
//context.manually_sized_funcs.emplace("guMtxIdent", 0x4C);
for (const auto& func_size : config.manual_func_sizes) {
context.manually_sized_funcs.emplace(func_size.func_name, func_size.size_bytes);
}
// Read all of the symbols in the elf and look for the entrypoint function // Read all of the symbols in the elf and look for the entrypoint function
bool found_entrypoint_func = read_symbols(context, elf_file, symtab_section, config.entrypoint); bool found_entrypoint_func = read_symbols(context, elf_file, symtab_section, config.entrypoint);
@ -1050,6 +1077,8 @@ int main(int argc, char** argv) {
fmt::print("Function count: {}\n", context.functions.size()); fmt::print("Function count: {}\n", context.functions.size());
std::filesystem::create_directories(config.output_func_path);
std::ofstream lookup_file{ config.output_func_path / "lookup.cpp" }; std::ofstream lookup_file{ config.output_func_path / "lookup.cpp" };
std::ofstream func_header_file{ config.output_func_path / "funcs.h" }; std::ofstream func_header_file{ config.output_func_path / "funcs.h" };
@ -1087,6 +1116,19 @@ int main(int argc, char** argv) {
context.functions[func_find->second].stubbed = true; context.functions[func_find->second].stubbed = true;
} }
// Ignore any functions specified in the config file.
for (const std::string& ignored_func : config.ignored_funcs) {
// Check if the specified function exists.
auto func_find = context.functions_by_name.find(ignored_func);
if (func_find == context.functions_by_name.end()) {
// Function doesn't exist, present an error to the user instead of silently failing to mark it as ignored.
// This helps prevent typos in the config file or functions renamed between versions from causing issues.
exit_failure(fmt::format("Function {} is set as ignored in the config file but does not exist!", ignored_func));
}
// Mark the function as .
context.functions[func_find->second].ignored = true;
}
// Apply any single-instruction patches. // Apply any single-instruction patches.
for (const RecompPort::InstructionPatch& patch : config.instruction_patches) { for (const RecompPort::InstructionPatch& patch : config.instruction_patches) {
// Check if the specified function exists. // Check if the specified function exists.
@ -1102,7 +1144,7 @@ int main(int argc, char** argv) {
// Check that the function actually contains this vram address. // Check that the function actually contains this vram address.
if (patch.vram < func_vram || patch.vram >= func_vram + func.words.size() * sizeof(func.words[0])) { if (patch.vram < func_vram || patch.vram >= func_vram + func.words.size() * sizeof(func.words[0])) {
exit_failure(fmt::vformat("Function {} has an instruction patch for vram 0x{:08X} but doesn't contain that vram address!", fmt::make_format_args(patch.vram))); exit_failure(fmt::format("Function {} has an instruction patch for vram 0x{:08X} but doesn't contain that vram address!", patch.func_name, (uint32_t)patch.vram));
} }
// Calculate the instruction index and modify the instruction. // Calculate the instruction index and modify the instruction.
@ -1119,7 +1161,7 @@ int main(int argc, char** argv) {
"void {}(uint8_t* rdram, recomp_context* ctx);\n", func.name); "void {}(uint8_t* rdram, recomp_context* ctx);\n", func.name);
//fmt::print(lookup_file, //fmt::print(lookup_file,
// " {{ 0x{:08X}u, {} }},\n", func.vram, func.name); // " {{ 0x{:08X}u, {} }},\n", func.vram, func.name);
if (RecompPort::recompile_function(context, func, config.output_func_path / (func.name + ".c"), static_funcs_by_section) == false) { if (RecompPort::recompile_function(context, config, func, config.output_func_path / (func.name + ".c"), static_funcs_by_section) == false) {
//lookup_file.clear(); //lookup_file.clear();
fmt::print(stderr, "Error recompiling {}\n", func.name); fmt::print(stderr, "Error recompiling {}\n", func.name);
std::exit(EXIT_FAILURE); std::exit(EXIT_FAILURE);
@ -1188,7 +1230,7 @@ int main(int argc, char** argv) {
"void {}(uint8_t* rdram, recomp_context* ctx);\n", func.name); "void {}(uint8_t* rdram, recomp_context* ctx);\n", func.name);
//fmt::print(lookup_file, //fmt::print(lookup_file,
// " {{ 0x{:08X}u, {} }},\n", func.vram, func.name); // " {{ 0x{:08X}u, {} }},\n", func.vram, func.name);
if (RecompPort::recompile_function(context, func, config.output_func_path / (func.name + ".c"), static_funcs_by_section) == false) { if (RecompPort::recompile_function(context, config, func, config.output_func_path / (func.name + ".c"), static_funcs_by_section) == false) {
//lookup_file.clear(); //lookup_file.clear();
fmt::print(stderr, "Error recompiling {}\n", func.name); fmt::print(stderr, "Error recompiling {}\n", func.name);
std::exit(EXIT_FAILURE); std::exit(EXIT_FAILURE);
@ -1226,13 +1268,24 @@ int main(int argc, char** argv) {
"\n" "\n"
); );
std::unordered_map<std::string, size_t> relocatable_section_indices{};
size_t written_sections = 0;
for (size_t section_index = 0; section_index < context.sections.size(); section_index++) { for (size_t section_index = 0; section_index < context.sections.size(); section_index++) {
const auto& section = context.sections[section_index]; const auto& section = context.sections[section_index];
const auto& section_funcs = context.section_functions[section_index]; const auto& section_funcs = context.section_functions[section_index];
if (section.name == ".cosection") {
fmt::print("");
}
if (!section_funcs.empty()) { if (!section_funcs.empty()) {
std::string_view section_name_trimmed{ section.name }; std::string_view section_name_trimmed{ section.name };
if (section.relocatable) {
relocatable_section_indices.emplace(section.name, written_sections);
}
while (section_name_trimmed[0] == '.') { while (section_name_trimmed[0] == '.') {
section_name_trimmed.remove_prefix(1); section_name_trimmed.remove_prefix(1);
} }
@ -1253,6 +1306,7 @@ int main(int argc, char** argv) {
} }
fmt::print(overlay_file, "}};\n"); fmt::print(overlay_file, "}};\n");
written_sections++;
} }
} }
section_load_table += "};\n"; section_load_table += "};\n";
@ -1260,6 +1314,24 @@ int main(int argc, char** argv) {
fmt::print(overlay_file, "{}", section_load_table); fmt::print(overlay_file, "{}", section_load_table);
fmt::print(overlay_file, "const size_t num_sections = {};\n", context.sections.size()); fmt::print(overlay_file, "const size_t num_sections = {};\n", context.sections.size());
fmt::print(overlay_file, "static int overlay_sections_by_index[] = {{\n");
for (const std::string& section : relocatable_sections_ordered) {
// Check if this is an empty overlay
if (section == "*") {
fmt::print(overlay_file, " -1,\n");
}
else {
auto find_it = relocatable_section_indices.find(section);
if (find_it == relocatable_section_indices.end()) {
fmt::print(stderr, "Failed to find written section index of relocatable section: {}\n", section);
std::exit(EXIT_FAILURE);
}
fmt::print(overlay_file, " {},\n", relocatable_section_indices[section]);
}
}
fmt::print(overlay_file, "}};\n");
} }
return 0; return 0;

View file

@ -9,6 +9,7 @@
#include "recomp_port.h" #include "recomp_port.h"
using InstrId = rabbitizer::InstrId::UniqueId; using InstrId = rabbitizer::InstrId::UniqueId;
using Cop0Reg = rabbitizer::Registers::Cpu::Cop0;
std::string_view ctx_gpr_prefix(int reg) { std::string_view ctx_gpr_prefix(int reg) {
if (reg != 0) { if (reg != 0) {
@ -17,7 +18,7 @@ std::string_view ctx_gpr_prefix(int reg) {
return ""; return "";
} }
bool process_instruction(const RecompPort::Context& context, const RecompPort::Function& func, const RecompPort::FunctionStats& stats, const std::unordered_set<uint32_t>& skipped_insns, size_t instr_index, const std::vector<rabbitizer::InstructionCpu>& instructions, std::ofstream& output_file, bool indent, bool emit_link_branch, int link_branch_index, size_t reloc_index, bool& needs_link_branch, bool& is_branch_likely, std::span<std::vector<uint32_t>> static_funcs_out) { bool process_instruction(const RecompPort::Context& context, const RecompPort::Config& config, const RecompPort::Function& func, const RecompPort::FunctionStats& stats, const std::unordered_set<uint32_t>& skipped_insns, size_t instr_index, const std::vector<rabbitizer::InstructionCpu>& instructions, std::ofstream& output_file, bool indent, bool emit_link_branch, int link_branch_index, size_t reloc_index, bool& needs_link_branch, bool& is_branch_likely, std::span<std::vector<uint32_t>> static_funcs_out) {
const auto& section = context.sections[func.section_index]; const auto& section = context.sections[func.section_index];
const auto& instr = instructions[instr_index]; const auto& instr = instructions[instr_index];
needs_link_branch = false; needs_link_branch = false;
@ -46,23 +47,19 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
uint32_t reloc_target_section_offset = 0; uint32_t reloc_target_section_offset = 0;
// Check if this instruction has a reloc. // Check if this instruction has a reloc.
if (section.relocatable && section.relocs[reloc_index].address == instr_vram) { if (section.relocatable && section.relocs.size() > 0 && section.relocs[reloc_index].address == instr_vram) {
// Get the reloc data for this instruction // Get the reloc data for this instruction
const auto& reloc = section.relocs[reloc_index]; const auto& reloc = section.relocs[reloc_index];
reloc_section = reloc.target_section; reloc_section = reloc.target_section;
// Some symbols are in a nonexistent section (e.g. absolute symbols), so check that the section is valid before doing anything else. // Some symbols are in a nonexistent section (e.g. absolute symbols), so check that the section is valid before doing anything else.
// Absolute symbols will never need to be relocated so it's safe to skip this. // Absolute symbols will never need to be relocated so it's safe to skip this.
if (reloc_section < context.sections.size()) { if (reloc_section < context.sections.size()) {
// Check if the target section is also relocatable. References to symbols that are in a non-relocatable section don't need to // Ignore this reloc if it points to a different section.
// be relocated, so we can skip those. // Also check if the reloc points to the bss section since that will also be relocated with the section.
if (context.sections[reloc_section].relocatable) { if (reloc_section == func.section_index || reloc_section == section.bss_section_index) {
// For games where references between sections aren't relocated, ignore this reloc if it points to a different section
// TODO expose this as a config option
// TODO!!!!! also relocate references to the corresponding bss section!!!!!
if (reloc_section == func.section_index) {
// Record the reloc's data. // Record the reloc's data.
reloc_type = reloc.type; reloc_type = reloc.type;
reloc_target_section_offset = reloc.target_address - context.sections[reloc_section].ram_addr; reloc_target_section_offset = reloc.target_address - section.ram_addr;
// Ignore all relocs that aren't HI16 or LO16. // Ignore all relocs that aren't HI16 or LO16.
if (reloc_type == RecompPort::RelocType::R_MIPS_HI16 || reloc_type == RecompPort::RelocType::R_MIPS_LO16) { if (reloc_type == RecompPort::RelocType::R_MIPS_HI16 || reloc_type == RecompPort::RelocType::R_MIPS_LO16) {
at_reloc = true; at_reloc = true;
@ -70,7 +67,6 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
} }
} }
} }
}
auto print_indent = [&]() { auto print_indent = [&]() {
fmt::print(output_file, " "); fmt::print(output_file, " ");
@ -96,7 +92,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) { if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) {
next_reloc_index++; next_reloc_index++;
} }
process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out); process_instruction(context, config, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out);
} }
print_indent(); print_indent();
fmt::vprint(output_file, fmt_str, fmt::make_format_args(args...)); fmt::vprint(output_file, fmt_str, fmt::make_format_args(args...));
@ -117,7 +113,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) { if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) {
next_reloc_index++; next_reloc_index++;
} }
process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, true, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out); process_instruction(context, config, func, stats, skipped_insns, instr_index + 1, instructions, output_file, true, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out);
} }
fmt::print(output_file, " "); fmt::print(output_file, " ");
fmt::vprint(output_file, fmt_str, fmt::make_format_args(args...)); fmt::vprint(output_file, fmt_str, fmt::make_format_args(args...));
@ -127,6 +123,76 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
fmt::print(output_file, ";\n }}\n"); fmt::print(output_file, ";\n }}\n");
}; };
auto print_func_call = [&](uint32_t target_func_vram) {
const auto matching_funcs_find = context.functions_by_vram.find(target_func_vram);
std::string jal_target_name;
uint32_t section_vram_start = section.ram_addr;
uint32_t section_vram_end = section.ram_addr + section.size;
// TODO the current section should be prioritized if the target jal is in its vram even if a function isn't known (i.e. static)
if (matching_funcs_find != context.functions_by_vram.end()) {
// If we found matches for the target function by vram,
const auto& matching_funcs_vec = matching_funcs_find->second;
size_t real_func_index;
bool ambiguous;
// If there is more than one corresponding function, look for any that have a nonzero size.
if (matching_funcs_vec.size() > 1) {
size_t nonzero_func_index = (size_t)-1;
bool found_nonzero_func = false;
for (size_t cur_func_index : matching_funcs_vec) {
const auto& cur_func = context.functions[cur_func_index];
if (cur_func.words.size() != 0) {
if (found_nonzero_func) {
ambiguous = true;
break;
}
// If this section is relocatable and the target vram is in the section, don't call functions
// in any section other than this one.
if (cur_func.section_index == func.section_index ||
!(section.relocatable && target_func_vram >= section_vram_start && target_func_vram < section_vram_end)) {
found_nonzero_func = true;
nonzero_func_index = cur_func_index;
}
}
}
if (nonzero_func_index == (size_t)-1) {
fmt::print(stderr, "[Warn] Potential jal resolution ambiguity\n");
for (size_t cur_func_index : matching_funcs_vec) {
fmt::print(stderr, " {}\n", context.functions[cur_func_index].name);
}
nonzero_func_index = 0;
}
real_func_index = nonzero_func_index;
ambiguous = false;
}
else {
real_func_index = matching_funcs_vec.front();
ambiguous = false;
}
if (ambiguous) {
fmt::print(stderr, "Ambiguous jal target: 0x{:08X}\n", target_func_vram);
for (size_t cur_func_index : matching_funcs_vec) {
const auto& cur_func = context.functions[cur_func_index];
fmt::print(stderr, " {}\n", cur_func.name);
}
return false;
}
jal_target_name = context.functions[real_func_index].name;
}
else {
const auto& section = context.sections[func.section_index];
if (target_func_vram >= section.ram_addr && target_func_vram < section.ram_addr + section.size) {
jal_target_name = fmt::format("static_{}_{:08X}", func.section_index, target_func_vram);
static_funcs_out[func.section_index].push_back(target_func_vram);
}
else {
fmt::print(stderr, "No function found for jal target: 0x{:08X}\n", target_func_vram);
return false;
}
}
needs_link_branch = true;
print_unconditional_branch("{}(rdram, ctx)", jal_target_name);
};
if (indent) { if (indent) {
print_indent(); print_indent();
} }
@ -148,18 +214,20 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
std::string unsigned_imm_string; std::string unsigned_imm_string;
std::string signed_imm_string; std::string signed_imm_string;
uint32_t func_vram_end = func.vram + func.words.size() * sizeof(func.words[0]);
if (!at_reloc) { if (!at_reloc) {
unsigned_imm_string = fmt::format("{:#X}", imm); unsigned_imm_string = fmt::format("{:#X}", imm);
signed_imm_string = fmt::format("{:#X}", (int16_t)imm); signed_imm_string = fmt::format("{:#X}", (int16_t)imm);
} else { } else {
switch (reloc_type) { switch (reloc_type) {
case RecompPort::RelocType::R_MIPS_HI16: case RecompPort::RelocType::R_MIPS_HI16:
unsigned_imm_string = fmt::format("RELOC_HI16({}, {:#X})", reloc_section, reloc_target_section_offset); unsigned_imm_string = fmt::format("RELOC_HI16({}, {:#X})", (uint32_t)func.section_index, reloc_target_section_offset);
signed_imm_string = "(int16_t)" + unsigned_imm_string; signed_imm_string = "(int16_t)" + unsigned_imm_string;
reloc_handled = true; reloc_handled = true;
break; break;
case RecompPort::RelocType::R_MIPS_LO16: case RecompPort::RelocType::R_MIPS_LO16:
unsigned_imm_string = fmt::format("RELOC_LO16({}, {:#X})", reloc_section, reloc_target_section_offset); unsigned_imm_string = fmt::format("RELOC_LO16({}, {:#X})", (uint32_t)func.section_index, reloc_target_section_offset);
signed_imm_string = "(int16_t)" + unsigned_imm_string; signed_imm_string = "(int16_t)" + unsigned_imm_string;
reloc_handled = true; reloc_handled = true;
break; break;
@ -170,6 +238,33 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
case InstrId::cpu_nop: case InstrId::cpu_nop:
fmt::print(output_file, "\n"); fmt::print(output_file, "\n");
break; break;
// Cop0 (Limited functionality)
case InstrId::cpu_mfc0:
{
Cop0Reg reg = instr.Get_cop0d();
switch (reg) {
case Cop0Reg::COP0_Status:
print_line("{}{} = cop0_status_read(ctx)", ctx_gpr_prefix(rt), rt);
break;
default:
fmt::print(stderr, "Unhandled cop0 register in mfc0: {}\n", (int)reg);
return false;
}
break;
}
case InstrId::cpu_mtc0:
{
Cop0Reg reg = instr.Get_cop0d();
switch (reg) {
case Cop0Reg::COP0_Status:
print_line("cop0_status_write(ctx, {}{})", ctx_gpr_prefix(rt), rt);
break;
default:
fmt::print(stderr, "Unhandled cop0 register in mtc0: {}\n", (int)reg);
return false;
}
break;
}
// Arithmetic // Arithmetic
case InstrId::cpu_lui: case InstrId::cpu_lui:
print_line("{}{} = S32({} << 16)", ctx_gpr_prefix(rt), rt, unsigned_imm_string); print_line("{}{} = S32({} << 16)", ctx_gpr_prefix(rt), rt, unsigned_imm_string);
@ -202,6 +297,10 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
case InstrId::cpu_addiu: case InstrId::cpu_addiu:
print_line("{}{} = ADD32({}{}, {})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, signed_imm_string); print_line("{}{} = ADD32({}{}, {})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, signed_imm_string);
break; break;
case InstrId::cpu_daddi:
case InstrId::cpu_daddiu:
print_line("{}{} = {}{} + {}", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, signed_imm_string);
break;
case InstrId::cpu_and: case InstrId::cpu_and:
print_line("{}{} = {}{} & {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt); print_line("{}{} = {}{} & {}{}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break; break;
@ -226,21 +325,48 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
case InstrId::cpu_sll: case InstrId::cpu_sll:
print_line("{}{} = S32({}{}) << {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa); print_line("{}{} = S32({}{}) << {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break; break;
case InstrId::cpu_dsll:
print_line("{}{} = {}{} << {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_dsll32:
print_line("{}{} = ((gpr)({}{})) << ({} + 32)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_sllv: case InstrId::cpu_sllv:
print_line("{}{} = S32({}{}) << ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs); print_line("{}{} = S32({}{}) << ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break; break;
case InstrId::cpu_dsllv:
print_line("{}{} = {}{} << ({}{} & 63)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_sra: case InstrId::cpu_sra:
print_line("{}{} = S32(SIGNED({}{}) >> {})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa); print_line("{}{} = S32({}{}) >> {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_dsra:
print_line("{}{} = SIGNED({}{}) >> {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_dsra32:
print_line("{}{} = SIGNED({}{}) >> ({} + 32)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break; break;
case InstrId::cpu_srav: case InstrId::cpu_srav:
print_line("{}{} = S32(SIGNED({}{}) >> ({}{} & 31))", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs); print_line("{}{} = S32({}{}) >> ({}{} & 31)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_dsrav:
print_line("{}{} = SIGNED({}{}) >> ({}{} & 63)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break; break;
case InstrId::cpu_srl: case InstrId::cpu_srl:
print_line("{}{} = S32(U32({}{}) >> {})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa); print_line("{}{} = S32(U32({}{}) >> {})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break; break;
case InstrId::cpu_dsrl:
print_line("{}{} = {}{} >> {}", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_dsrl32:
print_line("{}{} = ((gpr)({}{})) >> ({} + 32)", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, sa);
break;
case InstrId::cpu_srlv: case InstrId::cpu_srlv:
print_line("{}{} = S32(U32({}{}) >> ({}{} & 31))", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs); print_line("{}{} = S32(U32({}{}) >> ({}{} & 31))", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break; break;
case InstrId::cpu_dsrlv:
print_line("{}{} = {}{} >> ({}{} & 63))", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs);
break;
case InstrId::cpu_slt: case InstrId::cpu_slt:
print_line("{}{} = SIGNED({}{}) < SIGNED({}{}) ? 1 : 0", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt); print_line("{}{} = SIGNED({}{}) < SIGNED({}{}) ? 1 : 0", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
break; break;
@ -273,7 +399,9 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("{}{} = hi", ctx_gpr_prefix(rd), rd); print_line("{}{} = hi", ctx_gpr_prefix(rd), rd);
break; break;
// Loads // Loads
// TODO ld case InstrId::cpu_ld:
print_line("{}{} = LD({}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_lw: case InstrId::cpu_lw:
print_line("{}{} = MEM_W({}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base); print_line("{}{} = MEM_W({}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base);
break; break;
@ -290,6 +418,9 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("{}{} = MEM_BU({}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base); print_line("{}{} = MEM_BU({}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base);
break; break;
// Stores // Stores
case InstrId::cpu_sd:
print_line("SD({}{}, {}, {}{})", ctx_gpr_prefix(rt), rt, signed_imm_string, ctx_gpr_prefix(base), base);
break;
case InstrId::cpu_sw: case InstrId::cpu_sw:
print_line("MEM_W({}, {}{}) = {}{}", signed_imm_string, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt); print_line("MEM_W({}, {}{}) = {}{}", signed_imm_string, ctx_gpr_prefix(base), base, ctx_gpr_prefix(rt), rt);
break; break;
@ -342,67 +473,8 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
// Branches // Branches
case InstrId::cpu_jal: case InstrId::cpu_jal:
{ print_func_call(instr.getBranchVramGeneric());
uint32_t target_func_vram = instr.getBranchVramGeneric();
const auto matching_funcs_find = context.functions_by_vram.find(target_func_vram);
std::string jal_target_name;
// TODO the current section should be prioritized if the target jal is in its vram even if a function isn't known (i.e. static)
if (matching_funcs_find != context.functions_by_vram.end()) {
// If we found matches for the target function by vram,
const auto& matching_funcs_vec = matching_funcs_find->second;
size_t real_func_index;
bool ambiguous;
// If there is more than one corresponding function, look for any that have a nonzero size
if (matching_funcs_vec.size() > 1) {
size_t nonzero_func_index = (size_t)-1;
bool found_nonzero_func = false;
for (size_t cur_func_index : matching_funcs_vec) {
const auto& cur_func = context.functions[cur_func_index];
if (cur_func.words.size() != 0) {
if (found_nonzero_func) {
ambiguous = true;
break; break;
}
found_nonzero_func = true;
nonzero_func_index = cur_func_index;
}
}
if (nonzero_func_index == (size_t)-1) {
fmt::print(stderr, "[Warn] Potential jal resolution ambiguity\n");
for (size_t cur_func_index : matching_funcs_vec) {
fmt::print(stderr, " {}\n", context.functions[cur_func_index].name);
}
nonzero_func_index = 0;
}
real_func_index = nonzero_func_index;
ambiguous = false;
} else {
real_func_index = matching_funcs_vec.front();
ambiguous = false;
}
if (ambiguous) {
fmt::print(stderr, "Ambiguous jal target: 0x{:08X}\n", target_func_vram);
for (size_t cur_func_index : matching_funcs_vec) {
const auto& cur_func = context.functions[cur_func_index];
fmt::print(stderr, " {}\n", cur_func.name);
}
return false;
}
jal_target_name = context.functions[real_func_index].name;
} else {
const auto& section = context.sections[func.section_index];
if (target_func_vram >= section.ram_addr && target_func_vram < section.ram_addr + section.size) {
jal_target_name = fmt::format("static_{}_{:08X}", func.section_index, target_func_vram);
static_funcs_out[func.section_index].push_back(target_func_vram);
} else {
fmt::print(stderr, "No function found for jal target: 0x{:08X}\n", target_func_vram);
return false;
}
}
needs_link_branch = true;
print_unconditional_branch("{}(rdram, ctx)", jal_target_name);
break;
}
case InstrId::cpu_jalr: case InstrId::cpu_jalr:
// jalr can only be handled with $ra as the return address register // jalr can only be handled with $ra as the return address register
if (rd != (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) { if (rd != (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) {
@ -419,8 +491,20 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
if (branch_target == instr_vram) { if (branch_target == instr_vram) {
print_line("void pause_self(uint8_t *rdram); pause_self(rdram)"); print_line("void pause_self(uint8_t *rdram); pause_self(rdram)");
} }
// Check if the branch is within this function
else if (branch_target >= func.vram && branch_target < func_vram_end) {
print_unconditional_branch("goto L_{:08X}", branch_target); print_unconditional_branch("goto L_{:08X}", branch_target);
} }
// Otherwise, check if it's a tail call
else if (instr_vram == func_vram_end - 2 * sizeof(func.words[0])) {
fmt::print("Tail call in {}\n", func.name);
print_func_call(branch_target);
}
else {
fmt::print(stderr, "Unhandled branch in {} at 0x{:08X} to 0x{:08X}\n", func.name, instr_vram, branch_target);
return false;
}
}
break; break;
case InstrId::cpu_jr: case InstrId::cpu_jr:
if (rs == (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) { if (rs == (int)rabbitizer::Registers::Cpu::GprO32::GPR_O32_ra) {
@ -439,7 +523,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) { if (reloc_index + 1 < section.relocs.size() && next_vram > section.relocs[reloc_index].address) {
next_reloc_index++; next_reloc_index++;
} }
process_instruction(context, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out); process_instruction(context, config, func, stats, skipped_insns, instr_index + 1, instructions, output_file, false, false, link_branch_index, next_reloc_index, dummy_needs_link_branch, dummy_is_branch_likely, static_funcs_out);
print_indent(); print_indent();
fmt::print(output_file, "switch (jr_addend_{:08X} >> 2) {{\n", cur_jtbl.jr_vram); fmt::print(output_file, "switch (jr_addend_{:08X} >> 2) {{\n", cur_jtbl.jr_vram);
for (size_t entry_index = 0; entry_index < cur_jtbl.entries.size(); entry_index++) { for (size_t entry_index = 0; entry_index < cur_jtbl.entries.size(); entry_index++) {
@ -459,16 +543,27 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
}); });
if (jump_find_result != stats.absolute_jumps.end()) { if (jump_find_result != stats.absolute_jumps.end()) {
needs_link_branch = true;
print_unconditional_branch("LOOKUP_FUNC({})(rdram, ctx)", (uint64_t)(int32_t)jump_find_result->jump_target); print_unconditional_branch("LOOKUP_FUNC({})(rdram, ctx)", (uint64_t)(int32_t)jump_find_result->jump_target);
// jr doesn't link so it acts like a tail call, meaning we should return directly after the jump returns // jr doesn't link so it acts like a tail call, meaning we should return directly after the jump returns
print_line("return"); print_line("return");
break; break;
} }
bool is_tail_call = instr_vram == func_vram_end - 2 * sizeof(func.words[0]);
fmt::print(stderr, "No jump table found for jr at 0x{:08X}\n", instr_vram); if (is_tail_call) {
fmt::print("Indirect tail call in {}\n", func.name);
print_unconditional_branch("LOOKUP_FUNC({}{})(rdram, ctx)", ctx_gpr_prefix(rs), rs);
print_line("return");
break;
} }
fmt::print(stderr, "No jump table found for jr at 0x{:08X} and not tail call\n", instr_vram);
}
break;
case InstrId::cpu_syscall:
print_line("recomp_syscall_handler(rdram, ctx, 0x{:08X})", instr_vram);
// syscalls don't link, so treat it like a tail call
print_line("return");
break; break;
case InstrId::cpu_bnel: case InstrId::cpu_bnel:
is_branch_likely = true; is_branch_likely = true;
@ -530,7 +625,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
} }
else { else {
// odd fpr // odd fpr
print_line("ctx->f{}.u32h = {}{}", fs - 1, ctx_gpr_prefix(rt), rt); print_line("ctx->f_odd[({} - 1) * 2] = {}{}", fs, ctx_gpr_prefix(rt), rt);
} }
break; break;
case InstrId::cpu_mfc1: case InstrId::cpu_mfc1:
@ -539,7 +634,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("{}{} = (int32_t)ctx->f{}.u32l", ctx_gpr_prefix(rt), rt, fs); print_line("{}{} = (int32_t)ctx->f{}.u32l", ctx_gpr_prefix(rt), rt, fs);
} else { } else {
// odd fpr // odd fpr
print_line("{}{} = (int32_t)ctx->f{}.u32h", ctx_gpr_prefix(rt), rt, fs - 1); print_line("{}{} = (int32_t)ctx->f_odd[({} - 1) * 2]", ctx_gpr_prefix(rt), rt, fs);
} }
break; break;
//case InstrId::cpu_dmfc1: //case InstrId::cpu_dmfc1:
@ -557,16 +652,12 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("ctx->f{}.u32l = MEM_W({}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base); print_line("ctx->f{}.u32l = MEM_W({}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base);
} else { } else {
// odd fpr // odd fpr
print_line("ctx->f{}.u32h = MEM_W({}, {}{})", ft - 1, signed_imm_string, ctx_gpr_prefix(base), base); print_line("ctx->f_odd[({} - 1) * 2] = MEM_W({}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base);
} }
break; break;
case InstrId::cpu_ldc1: case InstrId::cpu_ldc1:
if ((ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", ft);
print_line("ctx->f{}.u64 = LD({}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base); print_line("ctx->f{}.u64 = LD({}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base);
} else {
fmt::print(stderr, "Invalid operand for ldc1: f{}\n", ft);
return false;
}
break; break;
case InstrId::cpu_swc1: case InstrId::cpu_swc1:
if ((ft & 1) == 0) { if ((ft & 1) == 0) {
@ -574,66 +665,56 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("MEM_W({}, {}{}) = ctx->f{}.u32l", signed_imm_string, ctx_gpr_prefix(base), base, ft); print_line("MEM_W({}, {}{}) = ctx->f{}.u32l", signed_imm_string, ctx_gpr_prefix(base), base, ft);
} else { } else {
// odd fpr // odd fpr
print_line("MEM_W({}, {}{}) = ctx->f{}.u32h", signed_imm_string, ctx_gpr_prefix(base), base, ft - 1); print_line("MEM_W({}, {}{}) = ctx->f_odd[({} - 1) * 2]", signed_imm_string, ctx_gpr_prefix(base), base, ft);
} }
break; break;
case InstrId::cpu_sdc1: case InstrId::cpu_sdc1:
if ((ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", ft);
print_line("SD(ctx->f{}.u64, {}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base); print_line("SD(ctx->f{}.u64, {}, {}{})", ft, signed_imm_string, ctx_gpr_prefix(base), base);
} else {
fmt::print(stderr, "Invalid operand for sdc1: f{}\n", ft);
return false;
}
break; break;
// Cop1 compares // Cop1 compares
case InstrId::cpu_c_lt_s: case InstrId::cpu_c_lt_s:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.fl < ctx->f{}.fl", fs, ft);
break;
case InstrId::cpu_c_olt_s:
print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
//print_line("*(volatile int*)0 = 0;");
print_line("c1cs = ctx->f{}.fl < ctx->f{}.fl", fs, ft); print_line("c1cs = ctx->f{}.fl < ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.lt.s: f{} f{}\n", fs, ft);
return false;
}
break; break;
case InstrId::cpu_c_lt_d: case InstrId::cpu_c_lt_d:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.d < ctx->f{}.d", fs, ft); print_line("c1cs = ctx->f{}.d < ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.lt.d: f{} f{}\n", fs, ft);
return false;
}
break; break;
case InstrId::cpu_c_le_s: case InstrId::cpu_c_le_s:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft);
break;
case InstrId::cpu_c_ole_s:
print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
//print_line("*(volatile int*)0 = 0;");
print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft); print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.le.s: f{} f{}\n", fs, ft);
return false;
}
break; break;
case InstrId::cpu_c_le_d: case InstrId::cpu_c_le_d:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.d <= ctx->f{}.d", fs, ft); print_line("c1cs = ctx->f{}.d <= ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.le.d: f{} f{}\n", fs, ft);
return false;
}
break; break;
case InstrId::cpu_c_eq_s: case InstrId::cpu_c_eq_s:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.fl == ctx->f{}.fl", fs, ft); print_line("c1cs = ctx->f{}.fl == ctx->f{}.fl", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.eq.s: f{} f{}\n", fs, ft);
return false;
}
break; break;
case InstrId::cpu_c_eq_d: case InstrId::cpu_c_eq_d:
if ((fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("c1cs = ctx->f{}.d == ctx->f{}.d", fs, ft); print_line("c1cs = ctx->f{}.d == ctx->f{}.d", fs, ft);
} else {
fmt::print(stderr, "Invalid operand for c.eq.d: f{} f{}\n", fs, ft);
return false;
}
break; break;
// Cop1 branches // Cop1 branches
@ -656,236 +737,148 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
// Cop1 arithmetic // Cop1 arithmetic
case InstrId::cpu_mov_s: case InstrId::cpu_mov_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.fl = ctx->f{}.fl", fd, fs); print_line("ctx->f{}.fl = ctx->f{}.fl", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for mov.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_mov_d: case InstrId::cpu_mov_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.d = ctx->f{}.d", fd, fs); print_line("ctx->f{}.d = ctx->f{}.d", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for mov.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_neg_s: case InstrId::cpu_neg_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.fl)", fs); print_line("NAN_CHECK(ctx->f{}.fl)", fs);
print_line("ctx->f{}.fl = -ctx->f{}.fl", fd, fs); print_line("ctx->f{}.fl = -ctx->f{}.fl", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for neg.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_neg_d: case InstrId::cpu_neg_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.d)", fs); print_line("NAN_CHECK(ctx->f{}.d)", fs);
print_line("ctx->f{}.d = -ctx->f{}.d", fd, fs); print_line("ctx->f{}.d = -ctx->f{}.d", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for neg.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_abs_s: case InstrId::cpu_abs_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.fl)", fs); print_line("NAN_CHECK(ctx->f{}.fl)", fs);
print_line("ctx->f{}.fl = fabsf(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.fl = fabsf(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for abs.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_abs_d: case InstrId::cpu_abs_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.d)", fs); print_line("NAN_CHECK(ctx->f{}.d)", fs);
print_line("ctx->f{}.d = fabs(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.d = fabs(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for abs.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_sqrt_s: case InstrId::cpu_sqrt_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.fl)", fs); print_line("NAN_CHECK(ctx->f{}.fl)", fs);
print_line("ctx->f{}.fl = sqrtf(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.fl = sqrtf(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for sqrt.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_sqrt_d: case InstrId::cpu_sqrt_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.d)", fs); print_line("NAN_CHECK(ctx->f{}.d)", fs);
print_line("ctx->f{}.d = sqrt(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.d = sqrt(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for sqrt.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_add_s: case InstrId::cpu_add_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft); print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft);
print_line("ctx->f{}.fl = ctx->f{}.fl + ctx->f{}.fl", fd, fs, ft); print_line("ctx->f{}.fl = ctx->f{}.fl + ctx->f{}.fl", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for add.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_add_d: case InstrId::cpu_add_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft); print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft);
print_line("ctx->f{}.d = ctx->f{}.d + ctx->f{}.d", fd, fs, ft); print_line("ctx->f{}.d = ctx->f{}.d + ctx->f{}.d", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for add.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_sub_s: case InstrId::cpu_sub_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft); print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft);
print_line("ctx->f{}.fl = ctx->f{}.fl - ctx->f{}.fl", fd, fs, ft); print_line("ctx->f{}.fl = ctx->f{}.fl - ctx->f{}.fl", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for sub.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_sub_d: case InstrId::cpu_sub_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft); print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft);
print_line("ctx->f{}.d = ctx->f{}.d - ctx->f{}.d", fd, fs, ft); print_line("ctx->f{}.d = ctx->f{}.d - ctx->f{}.d", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for sub.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_mul_s: case InstrId::cpu_mul_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft); print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft);
print_line("ctx->f{}.fl = MUL_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft); print_line("ctx->f{}.fl = MUL_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for mul.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_mul_d: case InstrId::cpu_mul_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft); print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft);
print_line("ctx->f{}.d = MUL_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft); print_line("ctx->f{}.d = MUL_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for mul.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_div_s: case InstrId::cpu_div_s:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft); print_line("NAN_CHECK(ctx->f{}.fl); NAN_CHECK(ctx->f{}.fl)", fs, ft);
print_line("ctx->f{}.fl = DIV_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft); print_line("ctx->f{}.fl = DIV_S(ctx->f{}.fl, ctx->f{}.fl)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for div.s: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_div_d: case InstrId::cpu_div_d:
if ((fd & 1) == 0 && (fs & 1) == 0 && (ft & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("CHECK_FR(ctx, {})", ft);
print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft); print_line("NAN_CHECK(ctx->f{}.d); NAN_CHECK(ctx->f{}.d)", fs, ft);
print_line("ctx->f{}.d = DIV_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft); print_line("ctx->f{}.d = DIV_D(ctx->f{}.d, ctx->f{}.d)", fd, fs, ft);
} else {
fmt::print(stderr, "Invalid operand(s) for div.d: f{} f{} f{}\n", fd, fs, ft);
return false;
}
break; break;
case InstrId::cpu_cvt_s_w: case InstrId::cpu_cvt_s_w:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.fl = CVT_S_W(ctx->f{}.u32l)", fd, fs); print_line("ctx->f{}.fl = CVT_S_W(ctx->f{}.u32l)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.s.w: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_cvt_d_w: case InstrId::cpu_cvt_d_w:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.d = CVT_D_W(ctx->f{}.u32l)", fd, fs); print_line("ctx->f{}.d = CVT_D_W(ctx->f{}.u32l)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.d.w: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_cvt_d_s: case InstrId::cpu_cvt_d_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.fl)", fs); print_line("NAN_CHECK(ctx->f{}.fl)", fs);
print_line("ctx->f{}.d = CVT_D_S(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.d = CVT_D_S(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.d.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_cvt_s_d: case InstrId::cpu_cvt_s_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("NAN_CHECK(ctx->f{}.d)", fs); print_line("NAN_CHECK(ctx->f{}.d)", fs);
print_line("ctx->f{}.fl = CVT_S_D(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.fl = CVT_S_D(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.s.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_trunc_w_s: case InstrId::cpu_trunc_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = TRUNC_W_S(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.u32l = TRUNC_W_S(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for trunc.w.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_trunc_w_d: case InstrId::cpu_trunc_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = TRUNC_W_D(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.u32l = TRUNC_W_D(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for trunc.w.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
//case InstrId::cpu_trunc_l_s: //case InstrId::cpu_trunc_l_s:
// if ((fd & 1) == 0 && (fs & 1) == 0) { // print_line("CHECK_FR(ctx, {})", fd);
// // even fpr // print_line("CHECK_FR(ctx, {})", fs);
// print_line("ctx->f{}.u64 = TRUNC_L_S(ctx->f{}.fl)", fd, fs); // print_line("ctx->f{}.u64 = TRUNC_L_S(ctx->f{}.fl)", fd, fs);
// } else {
// fmt::print(stderr, "Invalid operand(s) for trunc.l.s: f{} f{}\n", fd, fs);
// return false;
// }
// break; // break;
//case InstrId::cpu_trunc_l_d: //case InstrId::cpu_trunc_l_d:
// if ((fd & 1) == 0 && (fs & 1) == 0) { // print_line("CHECK_FR(ctx, {})", fd);
// // even fpr // print_line("CHECK_FR(ctx, {})", fs);
// print_line("ctx->f{}.u64 = TRUNC_L_D(ctx->f{}.d)", fd, fs); // print_line("ctx->f{}.u64 = TRUNC_L_D(ctx->f{}.d)", fd, fs);
// } else {
// fmt::print(stderr, "Invalid operand(s) for trunc.l.d: f{} f{}\n", fd, fs);
// return false;
// }
// break; // break;
case InstrId::cpu_ctc1: case InstrId::cpu_ctc1:
if (cop1_cs != 31) { if (cop1_cs != 31) {
@ -902,76 +895,44 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
print_line("{}{} = rounding_mode", ctx_gpr_prefix(rt), rt); print_line("{}{} = rounding_mode", ctx_gpr_prefix(rt), rt);
break; break;
case InstrId::cpu_cvt_w_s: case InstrId::cpu_cvt_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = CVT_W_S(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.u32l = CVT_W_S(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.w.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_cvt_w_d: case InstrId::cpu_cvt_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = CVT_W_D(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.u32l = CVT_W_D(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for cvt.w.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_round_w_s: case InstrId::cpu_round_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = lroundf(ctx->f{}.fl)", fd, fs); print_line("ctx->f{}.u32l = lroundf(ctx->f{}.fl)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for round.w.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_round_w_d: case InstrId::cpu_round_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = lround(ctx->f{}.d)", fd, fs); print_line("ctx->f{}.u32l = lround(ctx->f{}.d)", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for round.w.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_ceil_w_s: case InstrId::cpu_ceil_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = S32(ceilf(ctx->f{}.fl))", fd, fs); print_line("ctx->f{}.u32l = S32(ceilf(ctx->f{}.fl))", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for ceil.w.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_ceil_w_d: case InstrId::cpu_ceil_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = S32(ceil(ctx->f{}.d))", fd, fs); print_line("ctx->f{}.u32l = S32(ceil(ctx->f{}.d))", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for ceil.w.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_floor_w_s: case InstrId::cpu_floor_w_s:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = S32(floorf(ctx->f{}.fl))", fd, fs); print_line("ctx->f{}.u32l = S32(floorf(ctx->f{}.fl))", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for floor.w.s: f{} f{}\n", fd, fs);
return false;
}
break; break;
case InstrId::cpu_floor_w_d: case InstrId::cpu_floor_w_d:
if ((fd & 1) == 0 && (fs & 1) == 0) { print_line("CHECK_FR(ctx, {})", fd);
// even fpr print_line("CHECK_FR(ctx, {})", fs);
print_line("ctx->f{}.u32l = S32(floor(ctx->f{}.d))", fd, fs); print_line("ctx->f{}.u32l = S32(floor(ctx->f{}.d))", fd, fs);
} else {
fmt::print(stderr, "Invalid operand(s) for floor.w.d: f{} f{}\n", fd, fs);
return false;
}
break; break;
default: default:
fmt::print(stderr, "Unhandled instruction: {}\n", instr.getOpcodeName()); fmt::print(stderr, "Unhandled instruction: {}\n", instr.getOpcodeName());
@ -986,16 +947,43 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
return true; return true;
} }
bool RecompPort::recompile_function(const RecompPort::Context& context, const RecompPort::Function& func, const std::filesystem::path& output_path, std::span<std::vector<uint32_t>> static_funcs_out) { bool compare_files(const std::filesystem::path& file1_path, const std::filesystem::path& file2_path) {
static std::vector<char> file1_buf(65536);
static std::vector<char> file2_buf(65536);
std::ifstream file1(file1_path, std::ifstream::ate | std::ifstream::binary); //open file at the end
std::ifstream file2(file2_path, std::ifstream::ate | std::ifstream::binary); //open file at the end
const std::ifstream::pos_type fileSize = file1.tellg();
file1.rdbuf()->pubsetbuf(file1_buf.data(), file1_buf.size());
file2.rdbuf()->pubsetbuf(file2_buf.data(), file2_buf.size());
if (fileSize != file2.tellg()) {
return false; //different file size
}
file1.seekg(0); //rewind
file2.seekg(0); //rewind
std::istreambuf_iterator<char> begin1(file1);
std::istreambuf_iterator<char> begin2(file2);
return std::equal(begin1, std::istreambuf_iterator<char>(), begin2); //Second argument is end-of-range iterator
}
bool RecompPort::recompile_function(const RecompPort::Context& context, const RecompPort::Config& config, const RecompPort::Function& func, const std::filesystem::path& output_path, std::span<std::vector<uint32_t>> static_funcs_out) {
//fmt::print("Recompiling {}\n", func.name); //fmt::print("Recompiling {}\n", func.name);
std::vector<rabbitizer::InstructionCpu> instructions; std::vector<rabbitizer::InstructionCpu> instructions;
// Open the output file and write the file header // Open the output file and write the file header
std::ofstream output_file{ output_path }; std::filesystem::path temp_path = output_path;
temp_path.replace_extension(".tmp");
std::ofstream output_file{ temp_path };
if (!output_file.good()) { if (!output_file.good()) {
fmt::print(stderr, "Failed to open file for writing: {}\n", output_path.string() ); fmt::print(stderr, "Failed to open file for writing: {}\n", temp_path.string() );
return false; return false;
} }
fmt::print(output_file, fmt::print(output_file,
"#include \"recomp.h\"\n" "#include \"recomp.h\"\n"
"#include \"disable_warnings.h\"\n" "#include \"disable_warnings.h\"\n"
@ -1053,7 +1041,7 @@ bool RecompPort::recompile_function(const RecompPort::Context& context, const Re
bool needs_link_branch = false; bool needs_link_branch = false;
bool in_likely_delay_slot = false; bool in_likely_delay_slot = false;
const auto& section = context.sections[func.section_index]; const auto& section = context.sections[func.section_index];
bool needs_reloc = section.relocatable; bool needs_reloc = section.relocatable && section.relocs.size() > 0;
size_t reloc_index = 0; size_t reloc_index = 0;
for (size_t instr_index = 0; instr_index < instructions.size(); ++instr_index) { for (size_t instr_index = 0; instr_index < instructions.size(); ++instr_index) {
bool had_link_branch = needs_link_branch; bool had_link_branch = needs_link_branch;
@ -1075,8 +1063,13 @@ bool RecompPort::recompile_function(const RecompPort::Context& context, const Re
} }
} }
if (section.name == ".anseq") {
std::this_thread::yield();
}
// Process the current instruction and check for errors // Process the current instruction and check for errors
if (process_instruction(context, func, stats, skipped_insns, instr_index, instructions, output_file, false, needs_link_branch, num_link_branches, reloc_index, needs_link_branch, is_branch_likely, static_funcs_out) == false) { if (process_instruction(context, config, func, stats, skipped_insns, instr_index, instructions, output_file, false, needs_link_branch, num_link_branches, reloc_index, needs_link_branch, is_branch_likely, static_funcs_out) == false) {
fmt::print(stderr, "Error in recompilation, clearing {}\n", output_path.string()); fmt::print(stderr, "Error in recompilation, clearing {}\n", output_path.string());
output_file.clear(); output_file.clear();
return false; return false;
@ -1100,5 +1093,17 @@ bool RecompPort::recompile_function(const RecompPort::Context& context, const Re
// Terminate the function // Terminate the function
fmt::print(output_file, ";}}\n"); fmt::print(output_file, ";}}\n");
output_file.close();
// If a file of the target name exists and it's identical to the output file, delete the output file.
// This prevents updating the existing file so that it doesn't need to be rebuilt.
if (std::filesystem::exists(output_path) && compare_files(output_path, temp_path)) {
std::filesystem::remove(temp_path);
}
// Otherwise, rename the new file to the target path.
else {
std::filesystem::rename(temp_path, output_path);
}
return true; return true;
} }