Integrated SDL2 and switch to a test rom, fixed some issues in recompilation
This commit is contained in:
parent
d0c3eb73ec
commit
aad1bac933
8
.gitignore
vendored
8
.gitignore
vendored
|
@ -13,6 +13,7 @@ build/
|
|||
*.o
|
||||
|
||||
# Windows build output
|
||||
*.exe
|
||||
|
||||
# User-specific files
|
||||
*.rsuser
|
||||
|
@ -40,5 +41,12 @@ bld/
|
|||
# Visual Studio 2015/2017 cache/options directory
|
||||
.vs/
|
||||
|
||||
# Libraries (binaries that aren't in the repo)
|
||||
test/Lib
|
||||
|
||||
# RT64 (since it's not public yet)
|
||||
test/RT64
|
||||
|
||||
# Runtime files
|
||||
imgui.ini
|
||||
rt64.log
|
||||
|
|
50
src/main.cpp
50
src/main.cpp
|
@ -211,7 +211,7 @@ std::unordered_set<std::string> ignored_funcs {
|
|||
"__osGetTLBPageMask",
|
||||
"__osGetTLBASID",
|
||||
"__osProbeTLB",
|
||||
// Coprocessor 0 functions
|
||||
// Coprocessor 0/1 functions
|
||||
"__osSetCount",
|
||||
"osGetCount",
|
||||
"__osSetSR",
|
||||
|
@ -224,15 +224,35 @@ std::unordered_set<std::string> ignored_funcs {
|
|||
"__osGetConfig",
|
||||
"__osSetWatchLo",
|
||||
"__osGetWatchLo",
|
||||
"__osSetFpcCsr",
|
||||
// Cache funcs
|
||||
"osInvalDCache",
|
||||
"osInvalICache",
|
||||
"osWritebackDCache",
|
||||
"osWritebackDCacheAll"
|
||||
"osWritebackDCacheAll",
|
||||
// Microcodes
|
||||
"rspbootTextStart",
|
||||
"gspF3DEX2_fifoTextStart",
|
||||
"gspS2DEX2_fifoTextStart",
|
||||
"gspL3DEX2_fifoTextStart",
|
||||
};
|
||||
|
||||
std::unordered_set<std::string> renamed_funcs{
|
||||
"sincosf"
|
||||
"sincosf",
|
||||
"sqrtf",
|
||||
"memcpy",
|
||||
"memset",
|
||||
"strchr",
|
||||
};
|
||||
|
||||
// Functions that weren't declared properly and thus have no size in the elf
|
||||
std::unordered_map<std::string, size_t> unsized_funcs{
|
||||
{ "guMtxF2L", 0x64 },
|
||||
{ "guScaleF", 0x48 },
|
||||
{ "guTranslateF", 0x48 },
|
||||
{ "guMtxIdentF", 0x48 },
|
||||
{ "sqrtf", 0x8 },
|
||||
{ "guMtxIdent", 0x4C },
|
||||
};
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
|
@ -308,21 +328,32 @@ int main(int argc, char** argv) {
|
|||
unsigned char type;
|
||||
ELFIO::Elf_Half section_index;
|
||||
unsigned char other;
|
||||
bool ignored = false;
|
||||
|
||||
// Read symbol properties
|
||||
symbols.get_symbol(sym_index, name, value, size, bind, type,
|
||||
section_index, other);
|
||||
|
||||
// Check if this symbol is unsized and if so populate its size from the unsized_funcs map
|
||||
if (size == 0) {
|
||||
auto size_find = unsized_funcs.find(name);
|
||||
if (size_find != unsized_funcs.end()) {
|
||||
size = size_find->second;
|
||||
type = ELFIO::STT_FUNC;
|
||||
}
|
||||
}
|
||||
|
||||
if (ignored_funcs.contains(name)) {
|
||||
name = name + "_recomp";
|
||||
ignored = true;
|
||||
}
|
||||
|
||||
// Check if this symbol is a function or has no type (like a regular glabel would)
|
||||
// Symbols with no type have a dummy entry created so that their symbol can be looked up for function calls
|
||||
if (type == ELFIO::STT_FUNC || type == ELFIO::STT_NOTYPE) {
|
||||
bool ignored = false;
|
||||
if (ignored || type == ELFIO::STT_FUNC || type == ELFIO::STT_NOTYPE || type == ELFIO::STT_OBJECT) {
|
||||
if (renamed_funcs.contains(name)) {
|
||||
name = "_" + name;
|
||||
}
|
||||
if (ignored_funcs.contains(name)) {
|
||||
name = name + "_recomp";
|
||||
ignored = true;
|
||||
ignored = false;
|
||||
}
|
||||
if (section_index < section_rom_addrs.size()) {
|
||||
auto section_rom_addr = section_rom_addrs[section_index];
|
||||
|
@ -377,6 +408,7 @@ int main(int argc, char** argv) {
|
|||
//#pragma omp parallel for
|
||||
for (size_t i = 0; i < context.functions.size(); i++) {
|
||||
const auto& func = context.functions[i];
|
||||
|
||||
if (!func.ignored && func.words.size() != 0) {
|
||||
fmt::print(func_header_file,
|
||||
"void {}(uint8_t* restrict rdram, recomp_context* restrict ctx);\n", func.name);
|
||||
|
|
|
@ -128,6 +128,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
|
|||
case InstrId::cpu_subu:
|
||||
print_line("{}{} = SUB32({}{}, {}{})", ctx_gpr_prefix(rd), rd, ctx_gpr_prefix(rs), rs, ctx_gpr_prefix(rt), rt);
|
||||
break;
|
||||
case InstrId::cpu_addi:
|
||||
case InstrId::cpu_addiu:
|
||||
print_line("{}{} = ADD32({}{}, {:#X})", ctx_gpr_prefix(rt), rt, ctx_gpr_prefix(rs), rs, (int16_t)imm);
|
||||
break;
|
||||
|
@ -464,7 +465,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
|
|||
// Cop1 compares
|
||||
case InstrId::cpu_c_lt_s:
|
||||
if ((fs & 1) == 0 && (ft & 1) == 0) {
|
||||
print_line("c1cs = ctx->f{}.fl <= ctx->f{}.fl", fs, ft);
|
||||
print_line("c1cs = ctx->f{}.fl < ctx->f{}.fl", fs, ft);
|
||||
} else {
|
||||
fmt::print(stderr, "Invalid operand for c.lt.s: f{} f{}\n", fs, ft);
|
||||
return false;
|
||||
|
@ -472,7 +473,7 @@ bool process_instruction(const RecompPort::Context& context, const RecompPort::F
|
|||
break;
|
||||
case InstrId::cpu_c_lt_d:
|
||||
if ((fs & 1) == 0 && (ft & 1) == 0) {
|
||||
print_line("c1cs = ctx->f{}.d <= ctx->f{}.d", fs, ft);
|
||||
print_line("c1cs = ctx->f{}.d < ctx->f{}.d", fs, ft);
|
||||
} else {
|
||||
fmt::print(stderr, "Invalid operand for c.lt.d: f{} f{}\n", fs, ft);
|
||||
return false;
|
||||
|
|
File diff suppressed because it is too large
Load diff
File diff suppressed because it is too large
Load diff
|
@ -3,8 +3,10 @@
|
|||
#include <chrono>
|
||||
#include <cinttypes>
|
||||
#include <variant>
|
||||
#include <unordered_map>
|
||||
|
||||
#include <Windows.h>
|
||||
#include "SDL.h"
|
||||
#include "blockingconcurrentqueue.h"
|
||||
|
||||
#include "ultra64.h"
|
||||
|
@ -85,7 +87,7 @@ extern "C" void osViSetEvent(RDRAM_ARG PTR(OSMesgQueue) mq_, OSMesg msg, u32 ret
|
|||
events_context.vi.retrace_count = retrace_count;
|
||||
}
|
||||
|
||||
constexpr uint32_t speed_multiplier = 10;
|
||||
constexpr uint32_t speed_multiplier = 1;
|
||||
|
||||
// N64 CPU counter ticks per millisecond
|
||||
constexpr uint32_t counter_per_ms = 46'875 * speed_multiplier;
|
||||
|
@ -176,11 +178,57 @@ void dp_complete() {
|
|||
void RT64Init(uint8_t* rom, uint8_t* rdram);
|
||||
void RT64SendDL(uint8_t* rdram, const OSTask* task);
|
||||
void RT64UpdateScreen(uint32_t vi_origin);
|
||||
void RT64PumpEvents();
|
||||
|
||||
std::unordered_map<SDL_Scancode, int> button_map{
|
||||
{ SDL_Scancode::SDL_SCANCODE_LEFT, 0x0002 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_RIGHT, 0x0001 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_UP, 0x0008 },
|
||||
{ SDL_Scancode::SDL_SCANCODE_DOWN, 0x0004 }
|
||||
};
|
||||
|
||||
extern int button;
|
||||
extern int stick_x;
|
||||
extern int stick_y;
|
||||
|
||||
int sdl_event_filter(void* userdata, SDL_Event* event) {
|
||||
switch (event->type) {
|
||||
case SDL_EventType::SDL_KEYUP:
|
||||
case SDL_EventType::SDL_KEYDOWN:
|
||||
{
|
||||
const Uint8* key_states = SDL_GetKeyboardState(nullptr);
|
||||
int new_button = 0;
|
||||
|
||||
for (const auto& mapping : button_map) {
|
||||
if (key_states[mapping.first]) {
|
||||
new_button |= mapping.second;
|
||||
}
|
||||
}
|
||||
|
||||
button = new_button;
|
||||
|
||||
stick_x = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_D] - key_states[SDL_Scancode::SDL_SCANCODE_A]);
|
||||
stick_y = 127 * (key_states[SDL_Scancode::SDL_SCANCODE_W] - key_states[SDL_Scancode::SDL_SCANCODE_S]);
|
||||
}
|
||||
break;
|
||||
case SDL_EventType::SDL_QUIT:
|
||||
std::quick_exit(ERROR_SUCCESS);
|
||||
break;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
void gfx_thread_func(uint8_t* rdram, uint8_t* rom) {
|
||||
using namespace std::chrono_literals;
|
||||
if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_JOYSTICK) < 0) {
|
||||
fprintf(stderr, "Failed to initialize SDL2: %s\n", SDL_GetError());
|
||||
std::quick_exit(EXIT_FAILURE);
|
||||
}
|
||||
RT64Init(rom, rdram);
|
||||
SDL_Window* window = SDL_GetWindowFromID(1);
|
||||
// TODO set this window title in RT64, create the window here and send it to RT64, or something else entirely
|
||||
// as the current window name visibly changes as RT64 is initialized
|
||||
SDL_SetWindowTitle(window, "Recomp");
|
||||
SDL_SetEventFilter(sdl_event_filter, nullptr);
|
||||
|
||||
while (true) {
|
||||
// Try to pull an action from the queue
|
||||
|
@ -205,7 +253,7 @@ void gfx_thread_func(uint8_t* rdram, uint8_t* rom) {
|
|||
}
|
||||
|
||||
// Handle events
|
||||
RT64PumpEvents();
|
||||
SDL_PumpEvents();
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -16,15 +16,27 @@ struct OSContPad {
|
|||
u8 errno_;
|
||||
};
|
||||
|
||||
int button = 0;
|
||||
int stick_x = 0;
|
||||
int stick_y = 0;
|
||||
|
||||
void press_button(int button) {
|
||||
|
||||
}
|
||||
|
||||
void release_button(int button) {
|
||||
|
||||
}
|
||||
|
||||
extern "C" void osContGetReadData_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
int32_t pad = (uint32_t)ctx->r4;
|
||||
|
||||
// button
|
||||
MEM_H(0, pad) = 0;
|
||||
MEM_H(0, pad) = button;
|
||||
// stick_x
|
||||
MEM_B(2, pad) = 0;
|
||||
MEM_B(2, pad) = stick_x;
|
||||
// stick_y
|
||||
MEM_B(3, pad) = 0;
|
||||
MEM_B(3, pad) = stick_y;
|
||||
// errno
|
||||
MEM_B(4, pad) = 0;
|
||||
}
|
||||
|
|
|
@ -41,3 +41,7 @@ extern "C" void __osDisableInt_recomp(uint8_t* restrict rdram, recomp_context* r
|
|||
extern "C" void __osRestoreInt_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
;
|
||||
}
|
||||
|
||||
extern "C" void __osSetFpcCsr_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
ctx->r2 = 0;
|
||||
}
|
||||
|
|
|
@ -16,7 +16,7 @@ extern "C" void osCreatePiManager_recomp(uint8_t* restrict rdram, recomp_context
|
|||
|
||||
constexpr uint32_t rom_base = 0xB0000000;
|
||||
|
||||
void do_rom_read(uint8_t* rdram, int32_t ram_address, uint32_t dev_address, size_t num_bytes) {
|
||||
void do_rom_read(uint8_t* rdram, gpr ram_address, uint32_t dev_address, size_t num_bytes) {
|
||||
// TODO use word copies when possible
|
||||
uint8_t* rom_addr = rom.get() + (dev_address | rom_base) - rom_base;
|
||||
for (size_t i = 0; i < num_bytes; i++) {
|
||||
|
@ -30,10 +30,9 @@ extern "C" void osPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* res
|
|||
uint32_t pri = ctx->r5;
|
||||
uint32_t direction = ctx->r6;
|
||||
uint32_t devAddr = ctx->r7;
|
||||
int32_t dramAddr = MEM_W(0x10, ctx->r29);
|
||||
gpr dramAddr = MEM_W(0x10, ctx->r29);
|
||||
uint32_t size = MEM_W(0x14, ctx->r29);
|
||||
uint32_t mq_ = MEM_W(0x18, ctx->r29);
|
||||
OSMesgQueue* mq = TO_PTR(OSMesgQueue, mq_);
|
||||
PTR(OSMesgQueue) mq = MEM_W(0x18, ctx->r29);
|
||||
|
||||
debug_printf("[pi] DMA from 0x%08X into 0x%08X of size 0x%08X\n", devAddr, dramAddr, size);
|
||||
|
||||
|
@ -44,11 +43,43 @@ extern "C" void osPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* res
|
|||
//memcpy(rdram + (dramAddr & 0x3FFFFFF), rom.get() + (devAddr | rom_base) - rom_base, num_bytes);
|
||||
|
||||
// Send a message to the mq to indicate that the transfer completed
|
||||
osSendMesg(rdram, mq_, 0, OS_MESG_NOBLOCK);
|
||||
osSendMesg(rdram, mq, 0, OS_MESG_NOBLOCK);
|
||||
}
|
||||
|
||||
struct OSIoMesgHdr {
|
||||
// These 3 reversed due to endianness
|
||||
u8 status; /* Return status */
|
||||
u8 pri; /* Message priority (High or Normal) */
|
||||
u16 type; /* Message type */
|
||||
PTR(OSMesgQueue) retQueue; /* Return message queue to notify I/O completion */
|
||||
};
|
||||
|
||||
struct OSIoMesg {
|
||||
OSIoMesgHdr hdr; /* Message header */
|
||||
PTR(void) dramAddr; /* RDRAM buffer address (DMA) */
|
||||
u32 devAddr; /* Device buffer address (DMA) */
|
||||
u32 size; /* DMA transfer size in bytes */
|
||||
u32 piHandle; /* PI device handle */
|
||||
};
|
||||
|
||||
extern "C" void osEPiStartDma_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
;
|
||||
OSIoMesg* mb = TO_PTR(OSIoMesg, ctx->r5);
|
||||
uint32_t direction = ctx->r6;
|
||||
uint32_t devAddr = mb->devAddr;
|
||||
gpr dramAddr = mb->dramAddr;
|
||||
uint32_t size = mb->size;
|
||||
PTR(OSMesgQueue) mq = mb->hdr.retQueue;
|
||||
|
||||
debug_printf("[pi] DMA from 0x%08X into 0x%08X of size 0x%08X\n", devAddr, dramAddr, size);
|
||||
|
||||
// TODO asynchronous transfer (will require preemption in the scheduler)
|
||||
// TODO this won't handle unaligned DMA
|
||||
do_rom_read(rdram, dramAddr, devAddr, size);
|
||||
|
||||
//memcpy(rdram + (dramAddr & 0x3FFFFFF), rom.get() + (devAddr | rom_base) - rom_base, num_bytes);
|
||||
|
||||
// Send a message to the mq to indicate that the transfer completed
|
||||
osSendMesg(rdram, mq, 0, OS_MESG_NOBLOCK);
|
||||
}
|
||||
|
||||
extern "C" void osPiGetStatus_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
|
|
|
@ -5,6 +5,10 @@ extern "C" void osInitialize_recomp(uint8_t * restrict rdram, recomp_context * r
|
|||
osInitialize();
|
||||
}
|
||||
|
||||
extern "C" void __osInitialize_common_recomp(uint8_t * restrict rdram, recomp_context * restrict ctx) {
|
||||
osInitialize();
|
||||
}
|
||||
|
||||
extern "C" void osCreateThread_recomp(uint8_t* restrict rdram, recomp_context* restrict ctx) {
|
||||
osCreateThread(rdram, (uint32_t)ctx->r4, (OSId)ctx->r5, (uint32_t)ctx->r6, (uint32_t)ctx->r7,
|
||||
(uint32_t)MEM_W(0x10, ctx->r29), (OSPri)MEM_W(0x14, ctx->r29));
|
||||
|
|
|
@ -61,8 +61,12 @@ void run_thread_function(uint8_t* rdram, uint64_t addr, uint64_t sp, uint64_t ar
|
|||
func(rdram, &ctx);
|
||||
}
|
||||
|
||||
extern "C" void game_init(uint8_t* restrict rdram, recomp_context* restrict ctx);
|
||||
void do_rom_read(uint8_t* rdram, int32_t ram_address, uint32_t dev_address, size_t num_bytes);
|
||||
extern "C" void init(uint8_t * restrict rdram, recomp_context * restrict ctx);
|
||||
|
||||
// rocket robot
|
||||
//extern "C" void game_init(uint8_t* restrict rdram, recomp_context* restrict ctx);
|
||||
// test rom
|
||||
void do_rom_read(uint8_t* rdram, gpr ram_address, uint32_t dev_address, size_t num_bytes);
|
||||
|
||||
std::unique_ptr<uint8_t[]> rom;
|
||||
size_t rom_size;
|
||||
|
@ -105,7 +109,7 @@ int main(int argc, char **argv) {
|
|||
|
||||
// Get entrypoint from ROM
|
||||
// TODO fix this for other IPL3 versions
|
||||
int32_t entrypoint = byteswap(*reinterpret_cast<uint32_t*>(rom.get() + 0x8));
|
||||
gpr entrypoint = (int32_t)byteswap(*reinterpret_cast<uint32_t*>(rom.get() + 0x8));
|
||||
|
||||
// Allocate rdram_buffer
|
||||
std::unique_ptr<uint8_t[]> rdram_buffer = std::make_unique<uint8_t[]>(8 * 1024 * 1024);
|
||||
|
@ -153,13 +157,19 @@ int main(int argc, char **argv) {
|
|||
|
||||
// Clear bss
|
||||
// TODO run the entrypoint instead
|
||||
memset(rdram_buffer.get() + 0XAF860, 0, 0xC00A0u - 0XAF860);
|
||||
// rocket robot
|
||||
//memset(rdram_buffer.get() + 0xAF860, 0, 0xC00A0u - 0XAF860);
|
||||
// test rom
|
||||
memset(rdram_buffer.get() + 0x18670, 0, 0x20D120);
|
||||
|
||||
debug_printf("[Recomp] Starting\n");
|
||||
|
||||
Multilibultra::preinit(rdram_buffer.get(), rom.get());
|
||||
|
||||
game_init(rdram_buffer.get(), &context);
|
||||
// rocket robot
|
||||
// game_init(rdram_buffer.get(), &context);
|
||||
// test rom
|
||||
init(rdram_buffer.get(), &context);
|
||||
|
||||
debug_printf("[Recomp] Quitting\n");
|
||||
|
||||
|
|
582
test/thirdparty/blockingconcurrentqueue.h
vendored
Normal file
582
test/thirdparty/blockingconcurrentqueue.h
vendored
Normal file
|
@ -0,0 +1,582 @@
|
|||
// Provides an efficient blocking version of moodycamel::ConcurrentQueue.
|
||||
// ©2015-2020 Cameron Desrochers. Distributed under the terms of the simplified
|
||||
// BSD license, available at the top of concurrentqueue.h.
|
||||
// Also dual-licensed under the Boost Software License (see LICENSE.md)
|
||||
// Uses Jeff Preshing's semaphore implementation (under the terms of its
|
||||
// separate zlib license, see lightweightsemaphore.h).
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "concurrentqueue.h"
|
||||
#include "lightweightsemaphore.h"
|
||||
|
||||
#include <type_traits>
|
||||
#include <cerrno>
|
||||
#include <memory>
|
||||
#include <chrono>
|
||||
#include <ctime>
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
// This is a blocking version of the queue. It has an almost identical interface to
|
||||
// the normal non-blocking version, with the addition of various wait_dequeue() methods
|
||||
// and the removal of producer-specific dequeue methods.
|
||||
template<typename T, typename Traits = ConcurrentQueueDefaultTraits>
|
||||
class BlockingConcurrentQueue
|
||||
{
|
||||
private:
|
||||
typedef ::moodycamel::ConcurrentQueue<T, Traits> ConcurrentQueue;
|
||||
typedef ::moodycamel::LightweightSemaphore LightweightSemaphore;
|
||||
|
||||
public:
|
||||
typedef typename ConcurrentQueue::producer_token_t producer_token_t;
|
||||
typedef typename ConcurrentQueue::consumer_token_t consumer_token_t;
|
||||
|
||||
typedef typename ConcurrentQueue::index_t index_t;
|
||||
typedef typename ConcurrentQueue::size_t size_t;
|
||||
typedef typename std::make_signed<size_t>::type ssize_t;
|
||||
|
||||
static const size_t BLOCK_SIZE = ConcurrentQueue::BLOCK_SIZE;
|
||||
static const size_t EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD = ConcurrentQueue::EXPLICIT_BLOCK_EMPTY_COUNTER_THRESHOLD;
|
||||
static const size_t EXPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::EXPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t IMPLICIT_INITIAL_INDEX_SIZE = ConcurrentQueue::IMPLICIT_INITIAL_INDEX_SIZE;
|
||||
static const size_t INITIAL_IMPLICIT_PRODUCER_HASH_SIZE = ConcurrentQueue::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE;
|
||||
static const std::uint32_t EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE = ConcurrentQueue::EXPLICIT_CONSUMER_CONSUMPTION_QUOTA_BEFORE_ROTATE;
|
||||
static const size_t MAX_SUBQUEUE_SIZE = ConcurrentQueue::MAX_SUBQUEUE_SIZE;
|
||||
|
||||
public:
|
||||
// Creates a queue with at least `capacity` element slots; note that the
|
||||
// actual number of elements that can be inserted without additional memory
|
||||
// allocation depends on the number of producers and the block size (e.g. if
|
||||
// the block size is equal to `capacity`, only a single block will be allocated
|
||||
// up-front, which means only a single producer will be able to enqueue elements
|
||||
// without an extra allocation -- blocks aren't shared between producers).
|
||||
// This method is not thread safe -- it is up to the user to ensure that the
|
||||
// queue is fully constructed before it starts being used by other threads (this
|
||||
// includes making the memory effects of construction visible, possibly with a
|
||||
// memory barrier).
|
||||
explicit BlockingConcurrentQueue(size_t capacity = 6 * BLOCK_SIZE)
|
||||
: inner(capacity), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
BlockingConcurrentQueue(size_t minCapacity, size_t maxExplicitProducers, size_t maxImplicitProducers)
|
||||
: inner(minCapacity, maxExplicitProducers, maxImplicitProducers), sema(create<LightweightSemaphore, ssize_t, int>(0, (int)Traits::MAX_SEMA_SPINS), &BlockingConcurrentQueue::template destroy<LightweightSemaphore>)
|
||||
{
|
||||
assert(reinterpret_cast<ConcurrentQueue*>((BlockingConcurrentQueue*)1) == &((BlockingConcurrentQueue*)1)->inner && "BlockingConcurrentQueue must have ConcurrentQueue as its first member");
|
||||
if (!sema) {
|
||||
MOODYCAMEL_THROW(std::bad_alloc());
|
||||
}
|
||||
}
|
||||
|
||||
// Disable copying and copy assignment
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
BlockingConcurrentQueue& operator=(BlockingConcurrentQueue const&) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
// Moving is supported, but note that it is *not* a thread-safe operation.
|
||||
// Nobody can use the queue while it's being moved, and the memory effects
|
||||
// of that move must be propagated to other threads before they can use it.
|
||||
// Note: When a queue is moved, its tokens are still valid but can only be
|
||||
// used with the destination queue (i.e. semantically they are moved along
|
||||
// with the queue itself).
|
||||
BlockingConcurrentQueue(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
: inner(std::move(other.inner)), sema(std::move(other.sema))
|
||||
{ }
|
||||
|
||||
inline BlockingConcurrentQueue& operator=(BlockingConcurrentQueue&& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
return swap_internal(other);
|
||||
}
|
||||
|
||||
// Swaps this queue's state with the other's. Not thread-safe.
|
||||
// Swapping two queues does not invalidate their tokens, however
|
||||
// the tokens that were created for one queue must be used with
|
||||
// only the swapped queue (i.e. the tokens are tied to the
|
||||
// queue's movable state, not the object itself).
|
||||
inline void swap(BlockingConcurrentQueue& other) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
swap_internal(other);
|
||||
}
|
||||
|
||||
private:
|
||||
BlockingConcurrentQueue& swap_internal(BlockingConcurrentQueue& other)
|
||||
{
|
||||
if (this == &other) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
inner.swap(other.inner);
|
||||
sema.swap(other.sema);
|
||||
return *this;
|
||||
}
|
||||
|
||||
public:
|
||||
// Enqueues a single item (by copying it).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0,
|
||||
// or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Thread-safe.
|
||||
inline bool enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue(token, std::move(item)))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Allocates memory if required. Only fails if memory allocation fails (or
|
||||
// implicit production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0, or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Allocates memory if required. Only fails if memory allocation fails
|
||||
// (or Traits::MAX_SUBQUEUE_SIZE has been defined and would be surpassed).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if ((details::likely)(inner.enqueue_bulk(token, std::forward<It>(itemFirst), count))) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it).
|
||||
// Does not allocate memory. Fails if not enough room to enqueue (or implicit
|
||||
// production is disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE
|
||||
// is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible).
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by copying it) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T const& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, item)) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues a single item (by moving it, if possible) using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Thread-safe.
|
||||
inline bool try_enqueue(producer_token_t const& token, T&& item)
|
||||
{
|
||||
if (inner.try_enqueue(token, std::move(item))) {
|
||||
sema->signal();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items.
|
||||
// Does not allocate memory (except for one-time implicit producer).
|
||||
// Fails if not enough room to enqueue (or implicit production is
|
||||
// disabled because Traits::INITIAL_IMPLICIT_PRODUCER_HASH_SIZE is 0).
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Enqueues several items using an explicit producer token.
|
||||
// Does not allocate memory. Fails if not enough room to enqueue.
|
||||
// Note: Use std::make_move_iterator if the elements should be moved
|
||||
// instead of copied.
|
||||
// Thread-safe.
|
||||
template<typename It>
|
||||
inline bool try_enqueue_bulk(producer_token_t const& token, It itemFirst, size_t count)
|
||||
{
|
||||
if (inner.try_enqueue_bulk(token, std::forward<It>(itemFirst), count)) {
|
||||
sema->signal((LightweightSemaphore::ssize_t)(ssize_t)count);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Attempts to dequeue from the queue.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue from the queue using an explicit consumer token.
|
||||
// Returns false if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool try_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
if (sema->tryWait()) {
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued.
|
||||
// Returns 0 if all producer streams appeared empty at the time they
|
||||
// were checked (so, the queue is likely but not guaranteed to be empty).
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t try_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->tryWaitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Blocks the current thread until there's something to dequeue, then
|
||||
// dequeues it using an explicit consumer token.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline void wait_dequeue(consumer_token_t& token, U& item)
|
||||
{
|
||||
while (!sema->wait()) {
|
||||
continue;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout (specified in microseconds) expires. Returns false
|
||||
// without setting `item` if the timeout expires, otherwise assigns
|
||||
// to `item` and returns true.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::int64_t timeout_usecs)
|
||||
{
|
||||
if (!sema->wait(timeout_usecs)) {
|
||||
return false;
|
||||
}
|
||||
while (!inner.try_dequeue(token, item)) {
|
||||
continue;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Blocks the current thread until either there's something to dequeue
|
||||
// or the timeout expires. Returns false without setting `item` if the
|
||||
// timeout expires, otherwise assigns to `item` and returns true.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename U, typename Rep, typename Period>
|
||||
inline bool wait_dequeue_timed(consumer_token_t& token, U& item, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_timed(token, item, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which will
|
||||
// always be at least one (this method blocks until the queue
|
||||
// is non-empty) and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk(consumer_token_t& token, It itemFirst, size_t max)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Using a negative timeout indicates an indefinite timeout,
|
||||
// and is thus functionally equivalent to calling wait_dequeue_bulk.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
size_t count = 0;
|
||||
max = (size_t)sema->waitMany((LightweightSemaphore::ssize_t)(ssize_t)max, timeout_usecs);
|
||||
while (count != max) {
|
||||
count += inner.template try_dequeue_bulk<It&>(token, itemFirst, max - count);
|
||||
}
|
||||
return count;
|
||||
}
|
||||
|
||||
// Attempts to dequeue several elements from the queue using an explicit consumer token.
|
||||
// Returns the number of items actually dequeued, which can
|
||||
// be 0 if the timeout expires while waiting for elements,
|
||||
// and at most max.
|
||||
// Never allocates. Thread-safe.
|
||||
template<typename It, typename Rep, typename Period>
|
||||
inline size_t wait_dequeue_bulk_timed(consumer_token_t& token, It itemFirst, size_t max, std::chrono::duration<Rep, Period> const& timeout)
|
||||
{
|
||||
return wait_dequeue_bulk_timed<It&>(token, itemFirst, max, std::chrono::duration_cast<std::chrono::microseconds>(timeout).count());
|
||||
}
|
||||
|
||||
|
||||
// Returns an estimate of the total number of elements currently in the queue. This
|
||||
// estimate is only accurate if the queue has completely stabilized before it is called
|
||||
// (i.e. all enqueue and dequeue operations have completed and their memory effects are
|
||||
// visible on the calling thread, and no further operations start while this method is
|
||||
// being called).
|
||||
// Thread-safe.
|
||||
inline size_t size_approx() const
|
||||
{
|
||||
return (size_t)sema->availableApprox();
|
||||
}
|
||||
|
||||
|
||||
// Returns true if the underlying atomic variables used by
|
||||
// the queue are lock-free (they should be on most platforms).
|
||||
// Thread-safe.
|
||||
static constexpr bool is_lock_free()
|
||||
{
|
||||
return ConcurrentQueue::is_lock_free();
|
||||
}
|
||||
|
||||
|
||||
private:
|
||||
template<typename U, typename A1, typename A2>
|
||||
static inline U* create(A1&& a1, A2&& a2)
|
||||
{
|
||||
void* p = (Traits::malloc)(sizeof(U));
|
||||
return p != nullptr ? new (p) U(std::forward<A1>(a1), std::forward<A2>(a2)) : nullptr;
|
||||
}
|
||||
|
||||
template<typename U>
|
||||
static inline void destroy(U* p)
|
||||
{
|
||||
if (p != nullptr) {
|
||||
p->~U();
|
||||
}
|
||||
(Traits::free)(p);
|
||||
}
|
||||
|
||||
private:
|
||||
ConcurrentQueue inner;
|
||||
std::unique_ptr<LightweightSemaphore, void (*)(LightweightSemaphore*)> sema;
|
||||
};
|
||||
|
||||
|
||||
template<typename T, typename Traits>
|
||||
inline void swap(BlockingConcurrentQueue<T, Traits>& a, BlockingConcurrentQueue<T, Traits>& b) MOODYCAMEL_NOEXCEPT
|
||||
{
|
||||
a.swap(b);
|
||||
}
|
||||
|
||||
} // end namespace moodycamel
|
3747
test/thirdparty/concurrentqueue.h
vendored
Normal file
3747
test/thirdparty/concurrentqueue.h
vendored
Normal file
File diff suppressed because it is too large
Load diff
425
test/thirdparty/lightweightsemaphore.h
vendored
Normal file
425
test/thirdparty/lightweightsemaphore.h
vendored
Normal file
|
@ -0,0 +1,425 @@
|
|||
// Provides an efficient implementation of a semaphore (LightweightSemaphore).
|
||||
// This is an extension of Jeff Preshing's sempahore implementation (licensed
|
||||
// under the terms of its separate zlib license) that has been adapted and
|
||||
// extended by Cameron Desrochers.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstddef> // For std::size_t
|
||||
#include <atomic>
|
||||
#include <type_traits> // For std::make_signed<T>
|
||||
|
||||
#if defined(_WIN32)
|
||||
// Avoid including windows.h in a header; we only need a handful of
|
||||
// items, so we'll redeclare them here (this is relatively safe since
|
||||
// the API generally has to remain stable between Windows versions).
|
||||
// I know this is an ugly hack but it still beats polluting the global
|
||||
// namespace with thousands of generic names or adding a .cpp for nothing.
|
||||
extern "C" {
|
||||
struct _SECURITY_ATTRIBUTES;
|
||||
__declspec(dllimport) void* __stdcall CreateSemaphoreW(_SECURITY_ATTRIBUTES* lpSemaphoreAttributes, long lInitialCount, long lMaximumCount, const wchar_t* lpName);
|
||||
__declspec(dllimport) int __stdcall CloseHandle(void* hObject);
|
||||
__declspec(dllimport) unsigned long __stdcall WaitForSingleObject(void* hHandle, unsigned long dwMilliseconds);
|
||||
__declspec(dllimport) int __stdcall ReleaseSemaphore(void* hSemaphore, long lReleaseCount, long* lpPreviousCount);
|
||||
}
|
||||
#elif defined(__MACH__)
|
||||
#include <mach/mach.h>
|
||||
#elif defined(__unix__)
|
||||
#include <semaphore.h>
|
||||
|
||||
#if defined(__GLIBC_PREREQ) && defined(_GNU_SOURCE)
|
||||
#if __GLIBC_PREREQ(2,30)
|
||||
#define MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
namespace moodycamel
|
||||
{
|
||||
namespace details
|
||||
{
|
||||
|
||||
// Code in the mpmc_sema namespace below is an adaptation of Jeff Preshing's
|
||||
// portable + lightweight semaphore implementations, originally from
|
||||
// https://github.com/preshing/cpp11-on-multicore/blob/master/common/sema.h
|
||||
// LICENSE:
|
||||
// Copyright (c) 2015 Jeff Preshing
|
||||
//
|
||||
// This software is provided 'as-is', without any express or implied
|
||||
// warranty. In no event will the authors be held liable for any damages
|
||||
// arising from the use of this software.
|
||||
//
|
||||
// Permission is granted to anyone to use this software for any purpose,
|
||||
// including commercial applications, and to alter it and redistribute it
|
||||
// freely, subject to the following restrictions:
|
||||
//
|
||||
// 1. The origin of this software must not be misrepresented; you must not
|
||||
// claim that you wrote the original software. If you use this software
|
||||
// in a product, an acknowledgement in the product documentation would be
|
||||
// appreciated but is not required.
|
||||
// 2. Altered source versions must be plainly marked as such, and must not be
|
||||
// misrepresented as being the original software.
|
||||
// 3. This notice may not be removed or altered from any source distribution.
|
||||
#if defined(_WIN32)
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
void* m_hSema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
const long maxLong = 0x7fffffff;
|
||||
m_hSema = CreateSemaphoreW(nullptr, initialCount, maxLong, nullptr);
|
||||
assert(m_hSema);
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
CloseHandle(m_hSema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
const unsigned long infinite = 0xffffffff;
|
||||
return WaitForSingleObject(m_hSema, infinite) == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, 0) == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
return WaitForSingleObject(m_hSema, (unsigned long)(usecs / 1000)) == 0;
|
||||
}
|
||||
|
||||
void signal(int count = 1)
|
||||
{
|
||||
while (!ReleaseSemaphore(m_hSema, count, nullptr));
|
||||
}
|
||||
};
|
||||
#elif defined(__MACH__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (Apple iOS and OSX)
|
||||
// Can't use POSIX semaphores due to http://lists.apple.com/archives/darwin-kernel/2009/Apr/msg00010.html
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
semaphore_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
kern_return_t rc = semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, initialCount);
|
||||
assert(rc == KERN_SUCCESS);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
semaphore_destroy(mach_task_self(), m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return semaphore_wait(m_sema) == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
return timed_wait(0);
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t timeout_usecs)
|
||||
{
|
||||
mach_timespec_t ts;
|
||||
ts.tv_sec = static_cast<unsigned int>(timeout_usecs / 1000000);
|
||||
ts.tv_nsec = static_cast<int>((timeout_usecs % 1000000) * 1000);
|
||||
|
||||
// added in OSX 10.10: https://developer.apple.com/library/prerelease/mac/documentation/General/Reference/APIDiffsMacOSX10_10SeedDiff/modules/Darwin.html
|
||||
kern_return_t rc = semaphore_timedwait(m_sema, ts);
|
||||
return rc == KERN_SUCCESS;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (semaphore_signal(m_sema) != KERN_SUCCESS);
|
||||
}
|
||||
}
|
||||
};
|
||||
#elif defined(__unix__)
|
||||
//---------------------------------------------------------
|
||||
// Semaphore (POSIX, Linux)
|
||||
//---------------------------------------------------------
|
||||
class Semaphore
|
||||
{
|
||||
private:
|
||||
sem_t m_sema;
|
||||
|
||||
Semaphore(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
Semaphore& operator=(const Semaphore& other) MOODYCAMEL_DELETE_FUNCTION;
|
||||
|
||||
public:
|
||||
Semaphore(int initialCount = 0)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
int rc = sem_init(&m_sema, 0, static_cast<unsigned int>(initialCount));
|
||||
assert(rc == 0);
|
||||
(void)rc;
|
||||
}
|
||||
|
||||
~Semaphore()
|
||||
{
|
||||
sem_destroy(&m_sema);
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
// http://stackoverflow.com/questions/2013181/gdb-causes-sem-wait-to-fail-with-eintr-error
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_wait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool try_wait()
|
||||
{
|
||||
int rc;
|
||||
do {
|
||||
rc = sem_trywait(&m_sema);
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
bool timed_wait(std::uint64_t usecs)
|
||||
{
|
||||
struct timespec ts;
|
||||
const int usecs_in_1_sec = 1000000;
|
||||
const int nsecs_in_1_sec = 1000000000;
|
||||
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||||
#else
|
||||
clock_gettime(CLOCK_REALTIME, &ts);
|
||||
#endif
|
||||
ts.tv_sec += (time_t)(usecs / usecs_in_1_sec);
|
||||
ts.tv_nsec += (long)(usecs % usecs_in_1_sec) * 1000;
|
||||
// sem_timedwait bombs if you have more than 1e9 in tv_nsec
|
||||
// so we have to clean things up before passing it in
|
||||
if (ts.tv_nsec >= nsecs_in_1_sec) {
|
||||
ts.tv_nsec -= nsecs_in_1_sec;
|
||||
++ts.tv_sec;
|
||||
}
|
||||
|
||||
int rc;
|
||||
do {
|
||||
#ifdef MOODYCAMEL_LIGHTWEIGHTSEMAPHORE_MONOTONIC
|
||||
rc = sem_clockwait(&m_sema, CLOCK_MONOTONIC, &ts);
|
||||
#else
|
||||
rc = sem_timedwait(&m_sema, &ts);
|
||||
#endif
|
||||
} while (rc == -1 && errno == EINTR);
|
||||
return rc == 0;
|
||||
}
|
||||
|
||||
void signal()
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
|
||||
void signal(int count)
|
||||
{
|
||||
while (count-- > 0)
|
||||
{
|
||||
while (sem_post(&m_sema) == -1);
|
||||
}
|
||||
}
|
||||
};
|
||||
#else
|
||||
#error Unsupported platform! (No semaphore wrapper available)
|
||||
#endif
|
||||
|
||||
} // end namespace details
|
||||
|
||||
|
||||
//---------------------------------------------------------
|
||||
// LightweightSemaphore
|
||||
//---------------------------------------------------------
|
||||
class LightweightSemaphore
|
||||
{
|
||||
public:
|
||||
typedef std::make_signed<std::size_t>::type ssize_t;
|
||||
|
||||
private:
|
||||
std::atomic<ssize_t> m_count;
|
||||
details::Semaphore m_sema;
|
||||
int m_maxSpins;
|
||||
|
||||
bool waitWithPartialSpinning(std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if ((oldCount > 0) && m_count.compare_exchange_strong(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
std::atomic_signal_fence(std::memory_order_acquire); // Prevent the compiler from collapsing the loop.
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount > 0)
|
||||
return true;
|
||||
if (timeout_usecs < 0)
|
||||
{
|
||||
if (m_sema.wait())
|
||||
return true;
|
||||
}
|
||||
if (timeout_usecs > 0 && m_sema.timed_wait((std::uint64_t)timeout_usecs))
|
||||
return true;
|
||||
// At this point, we've timed out waiting for the semaphore, but the
|
||||
// count is still decremented indicating we may still be waiting on
|
||||
// it. So we have to re-adjust the count, but only if the semaphore
|
||||
// wasn't signaled enough times for us too since then. If it was, we
|
||||
// need to release the semaphore too.
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
return true;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
ssize_t waitManyWithPartialSpinning(ssize_t max, std::int64_t timeout_usecs = -1)
|
||||
{
|
||||
assert(max > 0);
|
||||
ssize_t oldCount;
|
||||
int spin = m_maxSpins;
|
||||
while (--spin >= 0)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_relaxed);
|
||||
if (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_strong(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
std::atomic_signal_fence(std::memory_order_acquire);
|
||||
}
|
||||
oldCount = m_count.fetch_sub(1, std::memory_order_acquire);
|
||||
if (oldCount <= 0)
|
||||
{
|
||||
if ((timeout_usecs == 0) || (timeout_usecs < 0 && !m_sema.wait()) || (timeout_usecs > 0 && !m_sema.timed_wait((std::uint64_t)timeout_usecs)))
|
||||
{
|
||||
while (true)
|
||||
{
|
||||
oldCount = m_count.load(std::memory_order_acquire);
|
||||
if (oldCount >= 0 && m_sema.try_wait())
|
||||
break;
|
||||
if (oldCount < 0 && m_count.compare_exchange_strong(oldCount, oldCount + 1, std::memory_order_relaxed, std::memory_order_relaxed))
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (max > 1)
|
||||
return 1 + tryWaitMany(max - 1);
|
||||
return 1;
|
||||
}
|
||||
|
||||
public:
|
||||
LightweightSemaphore(ssize_t initialCount = 0, int maxSpins = 10000) : m_count(initialCount), m_maxSpins(maxSpins)
|
||||
{
|
||||
assert(initialCount >= 0);
|
||||
assert(maxSpins >= 0);
|
||||
}
|
||||
|
||||
bool tryWait()
|
||||
{
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
if (m_count.compare_exchange_weak(oldCount, oldCount - 1, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool wait()
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning();
|
||||
}
|
||||
|
||||
bool wait(std::int64_t timeout_usecs)
|
||||
{
|
||||
return tryWait() || waitWithPartialSpinning(timeout_usecs);
|
||||
}
|
||||
|
||||
// Acquires between 0 and (greedily) max, inclusive
|
||||
ssize_t tryWaitMany(ssize_t max)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t oldCount = m_count.load(std::memory_order_relaxed);
|
||||
while (oldCount > 0)
|
||||
{
|
||||
ssize_t newCount = oldCount > max ? oldCount - max : 0;
|
||||
if (m_count.compare_exchange_weak(oldCount, newCount, std::memory_order_acquire, std::memory_order_relaxed))
|
||||
return oldCount - newCount;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Acquires at least one, and (greedily) at most max
|
||||
ssize_t waitMany(ssize_t max, std::int64_t timeout_usecs)
|
||||
{
|
||||
assert(max >= 0);
|
||||
ssize_t result = tryWaitMany(max);
|
||||
if (result == 0 && max > 0)
|
||||
result = waitManyWithPartialSpinning(max, timeout_usecs);
|
||||
return result;
|
||||
}
|
||||
|
||||
ssize_t waitMany(ssize_t max)
|
||||
{
|
||||
ssize_t result = waitMany(max, -1);
|
||||
assert(result > 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
void signal(ssize_t count = 1)
|
||||
{
|
||||
assert(count >= 0);
|
||||
ssize_t oldCount = m_count.fetch_add(count, std::memory_order_release);
|
||||
ssize_t toRelease = -oldCount < count ? -oldCount : count;
|
||||
if (toRelease > 0)
|
||||
{
|
||||
m_sema.signal((int)toRelease);
|
||||
}
|
||||
}
|
||||
|
||||
std::size_t availableApprox() const
|
||||
{
|
||||
ssize_t count = m_count.load(std::memory_order_relaxed);
|
||||
return count > 0 ? static_cast<std::size_t>(count) : 0;
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace moodycamel
|
Loading…
Reference in a new issue